A Posteriori Error Analysis for Variable-Coefficient Multiterm Time-Fractional Subdiffusion Equations

An initial-boundary value problem of subdiffusion type is considered; the temporal component of the differential operator has the form ∑ i = 1 ℓ q i ( t ) D t α i u ( x , t ) , where the q i are continuous functions, each D t α i is a Caputo derivative, and the α i lie in (0, 1]. Maximum/comparison...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of scientific computing 2022-08, Vol.92 (2), p.73, Article 73
Hauptverfasser: Kopteva, Natalia, Stynes, Martin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:An initial-boundary value problem of subdiffusion type is considered; the temporal component of the differential operator has the form ∑ i = 1 ℓ q i ( t ) D t α i u ( x , t ) , where the q i are continuous functions, each D t α i is a Caputo derivative, and the α i lie in (0, 1]. Maximum/comparison principles for this problem are proved under weak hypotheses. A new positivity result for the multinomial Mittag-Leffler function is derived. A posteriori error bounds are obtained in L 2 ( Ω ) and L ∞ ( Ω ) , where the spatial domain Ω lies in R d with d ∈ { 1 , 2 , 3 } . An adaptive algorithm based on this theory is tested extensively and shown to yield accurate numerical solutions on the meshes generated by the algorithm.
ISSN:0885-7474
1573-7691
DOI:10.1007/s10915-022-01936-2