A Posteriori Error Analysis for Variable-Coefficient Multiterm Time-Fractional Subdiffusion Equations
An initial-boundary value problem of subdiffusion type is considered; the temporal component of the differential operator has the form ∑ i = 1 ℓ q i ( t ) D t α i u ( x , t ) , where the q i are continuous functions, each D t α i is a Caputo derivative, and the α i lie in (0, 1]. Maximum/comparison...
Gespeichert in:
Veröffentlicht in: | Journal of scientific computing 2022-08, Vol.92 (2), p.73, Article 73 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | An initial-boundary value problem of subdiffusion type is considered; the temporal component of the differential operator has the form
∑
i
=
1
ℓ
q
i
(
t
)
D
t
α
i
u
(
x
,
t
)
, where the
q
i
are continuous functions, each
D
t
α
i
is a Caputo derivative, and the
α
i
lie in (0, 1]. Maximum/comparison principles for this problem are proved under weak hypotheses. A new positivity result for the multinomial Mittag-Leffler function is derived. A posteriori error bounds are obtained in
L
2
(
Ω
)
and
L
∞
(
Ω
)
, where the spatial domain
Ω
lies in
R
d
with
d
∈
{
1
,
2
,
3
}
. An adaptive algorithm based on this theory is tested extensively and shown to yield accurate numerical solutions on the meshes generated by the algorithm. |
---|---|
ISSN: | 0885-7474 1573-7691 |
DOI: | 10.1007/s10915-022-01936-2 |