Numerical Analysis of a Fast Finite Element Method for a Hidden-Memory Variable-Order Time-Fractional Diffusion Equation

We investigate a fast finite element scheme to a hidden-memory variable-order time-fractional diffusion equation. Different from the traditional L1 methods, a fast approximation to the hidden-memory variable-order fractional derivative is derived to reduce the computational cost of generating coeffi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of scientific computing 2022-05, Vol.91 (2), p.54, Article 54
Hauptverfasser: Jia, Jinhong, Wang, Hong, Zheng, Xiangcheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page 54
container_title Journal of scientific computing
container_volume 91
creator Jia, Jinhong
Wang, Hong
Zheng, Xiangcheng
description We investigate a fast finite element scheme to a hidden-memory variable-order time-fractional diffusion equation. Different from the traditional L1 methods, a fast approximation to the hidden-memory variable-order fractional derivative is derived to reduce the computational cost of generating coefficients from O ( N 2 ) to O ( N log N ) , where N refers to the number of time steps. We then develop different techniques from the analysis of L1 methods to prove error estimates for the corresponding fast fully-discrete finite element scheme. Furthermore, a fast divide and conquer algorithm is proposed to reduce the complexity of solving the linear systems from O ( M N 2 ) to O ( M N log 2 N ) where M stands for the spatial degree of freedom. Numerical experiments are presented to substantiate the theoretical results.
doi_str_mv 10.1007/s10915-022-01820-z
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918315586</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918315586</sourcerecordid><originalsourceid>FETCH-LOGICAL-c249t-e76051eba221ae7ead7799e65cbfc44140d69740a4cc03c65a2f42f503d8c6383</originalsourceid><addsrcrecordid>eNp9kMtKBDEQRYMoOD5-wFXAdbSSTjqdpeiMCj42o9uQSVc00g9NusHx6-1xBHeuqijOvRSHkBMOZxxAn2cOhisGQjDglQD2tUNmXOmC6dLwXTKDqlJMSy33yUHObwBgKiNm5PNhbDFF7xp60blmnWOmfaCOLlwe6CJ2cUA6b7DFbqD3OLz2NQ19moCbWNfYsXts-7Smzy5Ft2qQPaYaE13GFtkiOT_EfqqlVzGEMU87nX-MbnM8InvBNRmPf-cheVrMl5c37O7x-vby4o55Ic3AUJegOK6cENyhRldrbQyWyq-Cl5JLqEujJTjpPRS-VE4EKYKCoq58WVTFITnd9r6n_mPEPNi3fkzTT9kKw6uCK1WVEyW2lE99zgmDfU-xdWltOdiNYbs1bCfD9sew_ZpCxTaUJ7h7wfRX_U_qG21Ef28</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918315586</pqid></control><display><type>article</type><title>Numerical Analysis of a Fast Finite Element Method for a Hidden-Memory Variable-Order Time-Fractional Diffusion Equation</title><source>SpringerNature Journals</source><source>ProQuest Central UK/Ireland</source><source>ProQuest Central</source><creator>Jia, Jinhong ; Wang, Hong ; Zheng, Xiangcheng</creator><creatorcontrib>Jia, Jinhong ; Wang, Hong ; Zheng, Xiangcheng</creatorcontrib><description>We investigate a fast finite element scheme to a hidden-memory variable-order time-fractional diffusion equation. Different from the traditional L1 methods, a fast approximation to the hidden-memory variable-order fractional derivative is derived to reduce the computational cost of generating coefficients from O ( N 2 ) to O ( N log N ) , where N refers to the number of time steps. We then develop different techniques from the analysis of L1 methods to prove error estimates for the corresponding fast fully-discrete finite element scheme. Furthermore, a fast divide and conquer algorithm is proposed to reduce the complexity of solving the linear systems from O ( M N 2 ) to O ( M N log 2 N ) where M stands for the spatial degree of freedom. Numerical experiments are presented to substantiate the theoretical results.</description><identifier>ISSN: 0885-7474</identifier><identifier>EISSN: 1573-7691</identifier><identifier>DOI: 10.1007/s10915-022-01820-z</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Accuracy ; Algorithms ; Approximation ; Computational Mathematics and Numerical Analysis ; Diffusion rate ; Estimates ; Finite element analysis ; Finite element method ; Fourier transforms ; Linear systems ; Mathematical and Computational Engineering ; Mathematical and Computational Physics ; Mathematics ; Mathematics and Statistics ; Methods ; Numerical analysis ; Theoretical</subject><ispartof>Journal of scientific computing, 2022-05, Vol.91 (2), p.54, Article 54</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c249t-e76051eba221ae7ead7799e65cbfc44140d69740a4cc03c65a2f42f503d8c6383</citedby><cites>FETCH-LOGICAL-c249t-e76051eba221ae7ead7799e65cbfc44140d69740a4cc03c65a2f42f503d8c6383</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10915-022-01820-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2918315586?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>315,781,785,21392,27928,27929,33748,41492,42561,43809,51323,64389,64393,72473</link.rule.ids></links><search><creatorcontrib>Jia, Jinhong</creatorcontrib><creatorcontrib>Wang, Hong</creatorcontrib><creatorcontrib>Zheng, Xiangcheng</creatorcontrib><title>Numerical Analysis of a Fast Finite Element Method for a Hidden-Memory Variable-Order Time-Fractional Diffusion Equation</title><title>Journal of scientific computing</title><addtitle>J Sci Comput</addtitle><description>We investigate a fast finite element scheme to a hidden-memory variable-order time-fractional diffusion equation. Different from the traditional L1 methods, a fast approximation to the hidden-memory variable-order fractional derivative is derived to reduce the computational cost of generating coefficients from O ( N 2 ) to O ( N log N ) , where N refers to the number of time steps. We then develop different techniques from the analysis of L1 methods to prove error estimates for the corresponding fast fully-discrete finite element scheme. Furthermore, a fast divide and conquer algorithm is proposed to reduce the complexity of solving the linear systems from O ( M N 2 ) to O ( M N log 2 N ) where M stands for the spatial degree of freedom. Numerical experiments are presented to substantiate the theoretical results.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Approximation</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Diffusion rate</subject><subject>Estimates</subject><subject>Finite element analysis</subject><subject>Finite element method</subject><subject>Fourier transforms</subject><subject>Linear systems</subject><subject>Mathematical and Computational Engineering</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Methods</subject><subject>Numerical analysis</subject><subject>Theoretical</subject><issn>0885-7474</issn><issn>1573-7691</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kMtKBDEQRYMoOD5-wFXAdbSSTjqdpeiMCj42o9uQSVc00g9NusHx6-1xBHeuqijOvRSHkBMOZxxAn2cOhisGQjDglQD2tUNmXOmC6dLwXTKDqlJMSy33yUHObwBgKiNm5PNhbDFF7xp60blmnWOmfaCOLlwe6CJ2cUA6b7DFbqD3OLz2NQ19moCbWNfYsXts-7Smzy5Ft2qQPaYaE13GFtkiOT_EfqqlVzGEMU87nX-MbnM8InvBNRmPf-cheVrMl5c37O7x-vby4o55Ic3AUJegOK6cENyhRldrbQyWyq-Cl5JLqEujJTjpPRS-VE4EKYKCoq58WVTFITnd9r6n_mPEPNi3fkzTT9kKw6uCK1WVEyW2lE99zgmDfU-xdWltOdiNYbs1bCfD9sew_ZpCxTaUJ7h7wfRX_U_qG21Ef28</recordid><startdate>20220501</startdate><enddate>20220501</enddate><creator>Jia, Jinhong</creator><creator>Wang, Hong</creator><creator>Zheng, Xiangcheng</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20220501</creationdate><title>Numerical Analysis of a Fast Finite Element Method for a Hidden-Memory Variable-Order Time-Fractional Diffusion Equation</title><author>Jia, Jinhong ; Wang, Hong ; Zheng, Xiangcheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c249t-e76051eba221ae7ead7799e65cbfc44140d69740a4cc03c65a2f42f503d8c6383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Approximation</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Diffusion rate</topic><topic>Estimates</topic><topic>Finite element analysis</topic><topic>Finite element method</topic><topic>Fourier transforms</topic><topic>Linear systems</topic><topic>Mathematical and Computational Engineering</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Methods</topic><topic>Numerical analysis</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jia, Jinhong</creatorcontrib><creatorcontrib>Wang, Hong</creatorcontrib><creatorcontrib>Zheng, Xiangcheng</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Journal of scientific computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jia, Jinhong</au><au>Wang, Hong</au><au>Zheng, Xiangcheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical Analysis of a Fast Finite Element Method for a Hidden-Memory Variable-Order Time-Fractional Diffusion Equation</atitle><jtitle>Journal of scientific computing</jtitle><stitle>J Sci Comput</stitle><date>2022-05-01</date><risdate>2022</risdate><volume>91</volume><issue>2</issue><spage>54</spage><pages>54-</pages><artnum>54</artnum><issn>0885-7474</issn><eissn>1573-7691</eissn><abstract>We investigate a fast finite element scheme to a hidden-memory variable-order time-fractional diffusion equation. Different from the traditional L1 methods, a fast approximation to the hidden-memory variable-order fractional derivative is derived to reduce the computational cost of generating coefficients from O ( N 2 ) to O ( N log N ) , where N refers to the number of time steps. We then develop different techniques from the analysis of L1 methods to prove error estimates for the corresponding fast fully-discrete finite element scheme. Furthermore, a fast divide and conquer algorithm is proposed to reduce the complexity of solving the linear systems from O ( M N 2 ) to O ( M N log 2 N ) where M stands for the spatial degree of freedom. Numerical experiments are presented to substantiate the theoretical results.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10915-022-01820-z</doi></addata></record>
fulltext fulltext
identifier ISSN: 0885-7474
ispartof Journal of scientific computing, 2022-05, Vol.91 (2), p.54, Article 54
issn 0885-7474
1573-7691
language eng
recordid cdi_proquest_journals_2918315586
source SpringerNature Journals; ProQuest Central UK/Ireland; ProQuest Central
subjects Accuracy
Algorithms
Approximation
Computational Mathematics and Numerical Analysis
Diffusion rate
Estimates
Finite element analysis
Finite element method
Fourier transforms
Linear systems
Mathematical and Computational Engineering
Mathematical and Computational Physics
Mathematics
Mathematics and Statistics
Methods
Numerical analysis
Theoretical
title Numerical Analysis of a Fast Finite Element Method for a Hidden-Memory Variable-Order Time-Fractional Diffusion Equation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T09%3A51%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20Analysis%20of%20a%20Fast%20Finite%20Element%20Method%20for%20a%20Hidden-Memory%20Variable-Order%20Time-Fractional%20Diffusion%20Equation&rft.jtitle=Journal%20of%20scientific%20computing&rft.au=Jia,%20Jinhong&rft.date=2022-05-01&rft.volume=91&rft.issue=2&rft.spage=54&rft.pages=54-&rft.artnum=54&rft.issn=0885-7474&rft.eissn=1573-7691&rft_id=info:doi/10.1007/s10915-022-01820-z&rft_dat=%3Cproquest_cross%3E2918315586%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918315586&rft_id=info:pmid/&rfr_iscdi=true