Numerical Analysis of a Fast Finite Element Method for a Hidden-Memory Variable-Order Time-Fractional Diffusion Equation
We investigate a fast finite element scheme to a hidden-memory variable-order time-fractional diffusion equation. Different from the traditional L1 methods, a fast approximation to the hidden-memory variable-order fractional derivative is derived to reduce the computational cost of generating coeffi...
Gespeichert in:
Veröffentlicht in: | Journal of scientific computing 2022-05, Vol.91 (2), p.54, Article 54 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We investigate a fast finite element scheme to a hidden-memory variable-order time-fractional diffusion equation. Different from the traditional L1 methods, a fast approximation to the hidden-memory variable-order fractional derivative is derived to reduce the computational cost of generating coefficients from
O
(
N
2
)
to
O
(
N
log
N
)
, where
N
refers to the number of time steps. We then develop different techniques from the analysis of L1 methods to prove error estimates for the corresponding fast fully-discrete finite element scheme. Furthermore, a fast divide and conquer algorithm is proposed to reduce the complexity of solving the linear systems from
O
(
M
N
2
)
to
O
(
M
N
log
2
N
)
where
M
stands for the spatial degree of freedom. Numerical experiments are presented to substantiate the theoretical results. |
---|---|
ISSN: | 0885-7474 1573-7691 |
DOI: | 10.1007/s10915-022-01820-z |