Error Estimates for FEM Discretizations of the Navier–Stokes Equations with Dirac Measures
We analyze, on two dimensional polygonal domains, classical low–order inf-sup stable finite element approximations of the stationary Navier–Stokes equations with singular sources. We operate under the assumptions that the continuous and discrete solutions are sufficiently small. We perform an a prio...
Gespeichert in:
Veröffentlicht in: | Journal of scientific computing 2021-06, Vol.87 (3), p.97, Article 97 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We analyze, on two dimensional polygonal domains, classical low–order inf-sup stable finite element approximations of the stationary Navier–Stokes equations with singular sources. We operate under the assumptions that the continuous and discrete solutions are sufficiently small. We perform an a priori error analysis on convex domains. On Lipschitz, but not necessarily convex, polygonal domains, we design an a posteriori error estimator and prove its global reliability. We also explore efficiency estimates. We illustrate the theory with numerical tests. |
---|---|
ISSN: | 0885-7474 1573-7691 |
DOI: | 10.1007/s10915-021-01496-x |