Error Estimates for FEM Discretizations of the Navier–Stokes Equations with Dirac Measures

We analyze, on two dimensional polygonal domains, classical low–order inf-sup stable finite element approximations of the stationary Navier–Stokes equations with singular sources. We operate under the assumptions that the continuous and discrete solutions are sufficiently small. We perform an a prio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of scientific computing 2021-06, Vol.87 (3), p.97, Article 97
Hauptverfasser: Lepe, Felipe, Otárola, Enrique, Quero, Daniel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We analyze, on two dimensional polygonal domains, classical low–order inf-sup stable finite element approximations of the stationary Navier–Stokes equations with singular sources. We operate under the assumptions that the continuous and discrete solutions are sufficiently small. We perform an a priori error analysis on convex domains. On Lipschitz, but not necessarily convex, polygonal domains, we design an a posteriori error estimator and prove its global reliability. We also explore efficiency estimates. We illustrate the theory with numerical tests.
ISSN:0885-7474
1573-7691
DOI:10.1007/s10915-021-01496-x