Extension of Tensor-Product Generalized and Dense-Norm Summation-by-Parts Operators to Curvilinear Coordinates
Methodologies are presented that enable the construction of provably linearly stable and conservative high-order discretizations of partial differential equations in curvilinear coordinates based on generalized summation-by-parts operators, including operators with dense-norm matrices. Specifically,...
Gespeichert in:
Veröffentlicht in: | Journal of scientific computing 2019-09, Vol.80 (3), p.1957-1996 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Methodologies are presented that enable the construction of provably linearly stable and conservative high-order discretizations of partial differential equations in curvilinear coordinates based on generalized summation-by-parts operators, including operators with dense-norm matrices. Specifically, three approaches are presented for the construction of stable and conservative schemes in curvilinear coordinates using summation-by-parts (SBP) operators that have a diagonal norm but may or may not include boundary nodes: (1) the mortar-element approach, (2) the global SBP-operator approach, and (3) the staggered-grid approach. Moreover, the staggered-grid approach is extended to enable the development of stable dense-norm operators in curvilinear coordinates. In addition, collocated upwind simultaneous approximation terms for the weak imposition of boundary conditions or inter-element coupling are extended to curvilinear coordinates with the new approaches. While the emphasis in the paper is on tensor-product SBP operators, the approaches that are covered are directly applicable to multidimensional SBP operators. |
---|---|
ISSN: | 0885-7474 1573-7691 |
DOI: | 10.1007/s10915-019-01011-3 |