Jacobi Polynomials on the Bernstein Ellipse

In this paper, we are concerned with Jacobi polynomials P n ( α , β ) ( x ) on the Bernstein ellipse with motivation mainly coming from recent studies of convergence rate of spectral interpolation. An explicit representation of P n ( α , β ) ( x ) is derived in the variable of parametrization. This...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of scientific computing 2018-04, Vol.75 (1), p.457-477
Hauptverfasser: Wang, Haiyong, Zhang, Lun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 477
container_issue 1
container_start_page 457
container_title Journal of scientific computing
container_volume 75
creator Wang, Haiyong
Zhang, Lun
description In this paper, we are concerned with Jacobi polynomials P n ( α , β ) ( x ) on the Bernstein ellipse with motivation mainly coming from recent studies of convergence rate of spectral interpolation. An explicit representation of P n ( α , β ) ( x ) is derived in the variable of parametrization. This formula further allows us to show that the maximum value of P n ( α , β ) ( z ) over the Bernstein ellipse is attained at one of the endpoints of the major axis if α + β ≥ - 1 . For the minimum value, we are able to show that for a large class of Gegenbauer polynomials (i.e., α = β ), it is attained at two endpoints of the minor axis. These results particularly extend those previously known only for some special cases. Moreover, we obtain a more refined asymptotic estimate for Jacobi polynomials on the Bernstein ellipse.
doi_str_mv 10.1007/s10915-017-0542-4
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918314259</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918314259</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-4ec179da1c25522fb78fe7f196d4b3c65e62ab8995bc734b77c698dd4391f0253</originalsourceid><addsrcrecordid>eNp1kDtPwzAUhS0EEqHwA9giMSKDrx-xPUJVXqoEA8xW7DiQKo2DnQ7997gKEhPTHc75zpU-hC6B3AAh8jYB0SAwAYmJ4BTzI1SAkAzLSsMxKohSAksu-Sk6S2lDCNFK0wJdv9Qu2K58C_1-CNuu7lMZhnL68uW9j0OafDeUq77vxuTP0Umbc3_xexfo42H1vnzC69fH5-XdGjsG1YS5dyB1U4OjQlDaWqlaL1vQVcMtc5XwFa2t0lpYJxm3UrpKq6bhTENLqGALdDXvjjF873yazCbs4pBfGqpBMeBU6NyCueViSCn61oyx29Zxb4CYgxMzOzHZiTk4MTwzdGZS7g6fPv4t_w_9AE0nYkI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918314259</pqid></control><display><type>article</type><title>Jacobi Polynomials on the Bernstein Ellipse</title><source>SpringerLink Journals - AutoHoldings</source><source>ProQuest Central</source><creator>Wang, Haiyong ; Zhang, Lun</creator><creatorcontrib>Wang, Haiyong ; Zhang, Lun</creatorcontrib><description>In this paper, we are concerned with Jacobi polynomials P n ( α , β ) ( x ) on the Bernstein ellipse with motivation mainly coming from recent studies of convergence rate of spectral interpolation. An explicit representation of P n ( α , β ) ( x ) is derived in the variable of parametrization. This formula further allows us to show that the maximum value of P n ( α , β ) ( z ) over the Bernstein ellipse is attained at one of the endpoints of the major axis if α + β ≥ - 1 . For the minimum value, we are able to show that for a large class of Gegenbauer polynomials (i.e., α = β ), it is attained at two endpoints of the minor axis. These results particularly extend those previously known only for some special cases. Moreover, we obtain a more refined asymptotic estimate for Jacobi polynomials on the Bernstein ellipse.</description><identifier>ISSN: 0885-7474</identifier><identifier>EISSN: 1573-7691</identifier><identifier>DOI: 10.1007/s10915-017-0542-4</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Computational Mathematics and Numerical Analysis ; Interpolation ; Mathematical and Computational Engineering ; Mathematical and Computational Physics ; Mathematics ; Mathematics and Statistics ; Parameterization ; Polynomials ; Theoretical</subject><ispartof>Journal of scientific computing, 2018-04, Vol.75 (1), p.457-477</ispartof><rights>Springer Science+Business Media, LLC 2017</rights><rights>Springer Science+Business Media, LLC 2017.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-4ec179da1c25522fb78fe7f196d4b3c65e62ab8995bc734b77c698dd4391f0253</citedby><cites>FETCH-LOGICAL-c316t-4ec179da1c25522fb78fe7f196d4b3c65e62ab8995bc734b77c698dd4391f0253</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10915-017-0542-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2918314259?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,21367,27901,27902,33721,41464,42533,43781,51294</link.rule.ids></links><search><creatorcontrib>Wang, Haiyong</creatorcontrib><creatorcontrib>Zhang, Lun</creatorcontrib><title>Jacobi Polynomials on the Bernstein Ellipse</title><title>Journal of scientific computing</title><addtitle>J Sci Comput</addtitle><description>In this paper, we are concerned with Jacobi polynomials P n ( α , β ) ( x ) on the Bernstein ellipse with motivation mainly coming from recent studies of convergence rate of spectral interpolation. An explicit representation of P n ( α , β ) ( x ) is derived in the variable of parametrization. This formula further allows us to show that the maximum value of P n ( α , β ) ( z ) over the Bernstein ellipse is attained at one of the endpoints of the major axis if α + β ≥ - 1 . For the minimum value, we are able to show that for a large class of Gegenbauer polynomials (i.e., α = β ), it is attained at two endpoints of the minor axis. These results particularly extend those previously known only for some special cases. Moreover, we obtain a more refined asymptotic estimate for Jacobi polynomials on the Bernstein ellipse.</description><subject>Algorithms</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Interpolation</subject><subject>Mathematical and Computational Engineering</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Parameterization</subject><subject>Polynomials</subject><subject>Theoretical</subject><issn>0885-7474</issn><issn>1573-7691</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kDtPwzAUhS0EEqHwA9giMSKDrx-xPUJVXqoEA8xW7DiQKo2DnQ7997gKEhPTHc75zpU-hC6B3AAh8jYB0SAwAYmJ4BTzI1SAkAzLSsMxKohSAksu-Sk6S2lDCNFK0wJdv9Qu2K58C_1-CNuu7lMZhnL68uW9j0OafDeUq77vxuTP0Umbc3_xexfo42H1vnzC69fH5-XdGjsG1YS5dyB1U4OjQlDaWqlaL1vQVcMtc5XwFa2t0lpYJxm3UrpKq6bhTENLqGALdDXvjjF873yazCbs4pBfGqpBMeBU6NyCueViSCn61oyx29Zxb4CYgxMzOzHZiTk4MTwzdGZS7g6fPv4t_w_9AE0nYkI</recordid><startdate>20180401</startdate><enddate>20180401</enddate><creator>Wang, Haiyong</creator><creator>Zhang, Lun</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20180401</creationdate><title>Jacobi Polynomials on the Bernstein Ellipse</title><author>Wang, Haiyong ; Zhang, Lun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-4ec179da1c25522fb78fe7f196d4b3c65e62ab8995bc734b77c698dd4391f0253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algorithms</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Interpolation</topic><topic>Mathematical and Computational Engineering</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Parameterization</topic><topic>Polynomials</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Haiyong</creatorcontrib><creatorcontrib>Zhang, Lun</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Journal of scientific computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Haiyong</au><au>Zhang, Lun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Jacobi Polynomials on the Bernstein Ellipse</atitle><jtitle>Journal of scientific computing</jtitle><stitle>J Sci Comput</stitle><date>2018-04-01</date><risdate>2018</risdate><volume>75</volume><issue>1</issue><spage>457</spage><epage>477</epage><pages>457-477</pages><issn>0885-7474</issn><eissn>1573-7691</eissn><abstract>In this paper, we are concerned with Jacobi polynomials P n ( α , β ) ( x ) on the Bernstein ellipse with motivation mainly coming from recent studies of convergence rate of spectral interpolation. An explicit representation of P n ( α , β ) ( x ) is derived in the variable of parametrization. This formula further allows us to show that the maximum value of P n ( α , β ) ( z ) over the Bernstein ellipse is attained at one of the endpoints of the major axis if α + β ≥ - 1 . For the minimum value, we are able to show that for a large class of Gegenbauer polynomials (i.e., α = β ), it is attained at two endpoints of the minor axis. These results particularly extend those previously known only for some special cases. Moreover, we obtain a more refined asymptotic estimate for Jacobi polynomials on the Bernstein ellipse.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10915-017-0542-4</doi><tpages>21</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0885-7474
ispartof Journal of scientific computing, 2018-04, Vol.75 (1), p.457-477
issn 0885-7474
1573-7691
language eng
recordid cdi_proquest_journals_2918314259
source SpringerLink Journals - AutoHoldings; ProQuest Central
subjects Algorithms
Computational Mathematics and Numerical Analysis
Interpolation
Mathematical and Computational Engineering
Mathematical and Computational Physics
Mathematics
Mathematics and Statistics
Parameterization
Polynomials
Theoretical
title Jacobi Polynomials on the Bernstein Ellipse
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T11%3A14%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Jacobi%20Polynomials%20on%20the%20Bernstein%20Ellipse&rft.jtitle=Journal%20of%20scientific%20computing&rft.au=Wang,%20Haiyong&rft.date=2018-04-01&rft.volume=75&rft.issue=1&rft.spage=457&rft.epage=477&rft.pages=457-477&rft.issn=0885-7474&rft.eissn=1573-7691&rft_id=info:doi/10.1007/s10915-017-0542-4&rft_dat=%3Cproquest_cross%3E2918314259%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918314259&rft_id=info:pmid/&rfr_iscdi=true