Jacobi Polynomials on the Bernstein Ellipse
In this paper, we are concerned with Jacobi polynomials P n ( α , β ) ( x ) on the Bernstein ellipse with motivation mainly coming from recent studies of convergence rate of spectral interpolation. An explicit representation of P n ( α , β ) ( x ) is derived in the variable of parametrization. This...
Gespeichert in:
Veröffentlicht in: | Journal of scientific computing 2018-04, Vol.75 (1), p.457-477 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 477 |
---|---|
container_issue | 1 |
container_start_page | 457 |
container_title | Journal of scientific computing |
container_volume | 75 |
creator | Wang, Haiyong Zhang, Lun |
description | In this paper, we are concerned with Jacobi polynomials
P
n
(
α
,
β
)
(
x
)
on the Bernstein ellipse with motivation mainly coming from recent studies of convergence rate of spectral interpolation. An explicit representation of
P
n
(
α
,
β
)
(
x
)
is derived in the variable of parametrization. This formula further allows us to show that the maximum value of
P
n
(
α
,
β
)
(
z
)
over the Bernstein ellipse is attained at one of the endpoints of the major axis if
α
+
β
≥
-
1
. For the minimum value, we are able to show that for a large class of Gegenbauer polynomials (i.e.,
α
=
β
), it is attained at two endpoints of the minor axis. These results particularly extend those previously known only for some special cases. Moreover, we obtain a more refined asymptotic estimate for Jacobi polynomials on the Bernstein ellipse. |
doi_str_mv | 10.1007/s10915-017-0542-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918314259</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918314259</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-4ec179da1c25522fb78fe7f196d4b3c65e62ab8995bc734b77c698dd4391f0253</originalsourceid><addsrcrecordid>eNp1kDtPwzAUhS0EEqHwA9giMSKDrx-xPUJVXqoEA8xW7DiQKo2DnQ7997gKEhPTHc75zpU-hC6B3AAh8jYB0SAwAYmJ4BTzI1SAkAzLSsMxKohSAksu-Sk6S2lDCNFK0wJdv9Qu2K58C_1-CNuu7lMZhnL68uW9j0OafDeUq77vxuTP0Umbc3_xexfo42H1vnzC69fH5-XdGjsG1YS5dyB1U4OjQlDaWqlaL1vQVcMtc5XwFa2t0lpYJxm3UrpKq6bhTENLqGALdDXvjjF873yazCbs4pBfGqpBMeBU6NyCueViSCn61oyx29Zxb4CYgxMzOzHZiTk4MTwzdGZS7g6fPv4t_w_9AE0nYkI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918314259</pqid></control><display><type>article</type><title>Jacobi Polynomials on the Bernstein Ellipse</title><source>SpringerLink Journals - AutoHoldings</source><source>ProQuest Central</source><creator>Wang, Haiyong ; Zhang, Lun</creator><creatorcontrib>Wang, Haiyong ; Zhang, Lun</creatorcontrib><description>In this paper, we are concerned with Jacobi polynomials
P
n
(
α
,
β
)
(
x
)
on the Bernstein ellipse with motivation mainly coming from recent studies of convergence rate of spectral interpolation. An explicit representation of
P
n
(
α
,
β
)
(
x
)
is derived in the variable of parametrization. This formula further allows us to show that the maximum value of
P
n
(
α
,
β
)
(
z
)
over the Bernstein ellipse is attained at one of the endpoints of the major axis if
α
+
β
≥
-
1
. For the minimum value, we are able to show that for a large class of Gegenbauer polynomials (i.e.,
α
=
β
), it is attained at two endpoints of the minor axis. These results particularly extend those previously known only for some special cases. Moreover, we obtain a more refined asymptotic estimate for Jacobi polynomials on the Bernstein ellipse.</description><identifier>ISSN: 0885-7474</identifier><identifier>EISSN: 1573-7691</identifier><identifier>DOI: 10.1007/s10915-017-0542-4</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Computational Mathematics and Numerical Analysis ; Interpolation ; Mathematical and Computational Engineering ; Mathematical and Computational Physics ; Mathematics ; Mathematics and Statistics ; Parameterization ; Polynomials ; Theoretical</subject><ispartof>Journal of scientific computing, 2018-04, Vol.75 (1), p.457-477</ispartof><rights>Springer Science+Business Media, LLC 2017</rights><rights>Springer Science+Business Media, LLC 2017.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-4ec179da1c25522fb78fe7f196d4b3c65e62ab8995bc734b77c698dd4391f0253</citedby><cites>FETCH-LOGICAL-c316t-4ec179da1c25522fb78fe7f196d4b3c65e62ab8995bc734b77c698dd4391f0253</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10915-017-0542-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2918314259?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,21367,27901,27902,33721,41464,42533,43781,51294</link.rule.ids></links><search><creatorcontrib>Wang, Haiyong</creatorcontrib><creatorcontrib>Zhang, Lun</creatorcontrib><title>Jacobi Polynomials on the Bernstein Ellipse</title><title>Journal of scientific computing</title><addtitle>J Sci Comput</addtitle><description>In this paper, we are concerned with Jacobi polynomials
P
n
(
α
,
β
)
(
x
)
on the Bernstein ellipse with motivation mainly coming from recent studies of convergence rate of spectral interpolation. An explicit representation of
P
n
(
α
,
β
)
(
x
)
is derived in the variable of parametrization. This formula further allows us to show that the maximum value of
P
n
(
α
,
β
)
(
z
)
over the Bernstein ellipse is attained at one of the endpoints of the major axis if
α
+
β
≥
-
1
. For the minimum value, we are able to show that for a large class of Gegenbauer polynomials (i.e.,
α
=
β
), it is attained at two endpoints of the minor axis. These results particularly extend those previously known only for some special cases. Moreover, we obtain a more refined asymptotic estimate for Jacobi polynomials on the Bernstein ellipse.</description><subject>Algorithms</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Interpolation</subject><subject>Mathematical and Computational Engineering</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Parameterization</subject><subject>Polynomials</subject><subject>Theoretical</subject><issn>0885-7474</issn><issn>1573-7691</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kDtPwzAUhS0EEqHwA9giMSKDrx-xPUJVXqoEA8xW7DiQKo2DnQ7997gKEhPTHc75zpU-hC6B3AAh8jYB0SAwAYmJ4BTzI1SAkAzLSsMxKohSAksu-Sk6S2lDCNFK0wJdv9Qu2K58C_1-CNuu7lMZhnL68uW9j0OafDeUq77vxuTP0Umbc3_xexfo42H1vnzC69fH5-XdGjsG1YS5dyB1U4OjQlDaWqlaL1vQVcMtc5XwFa2t0lpYJxm3UrpKq6bhTENLqGALdDXvjjF873yazCbs4pBfGqpBMeBU6NyCueViSCn61oyx29Zxb4CYgxMzOzHZiTk4MTwzdGZS7g6fPv4t_w_9AE0nYkI</recordid><startdate>20180401</startdate><enddate>20180401</enddate><creator>Wang, Haiyong</creator><creator>Zhang, Lun</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20180401</creationdate><title>Jacobi Polynomials on the Bernstein Ellipse</title><author>Wang, Haiyong ; Zhang, Lun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-4ec179da1c25522fb78fe7f196d4b3c65e62ab8995bc734b77c698dd4391f0253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algorithms</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Interpolation</topic><topic>Mathematical and Computational Engineering</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Parameterization</topic><topic>Polynomials</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Haiyong</creatorcontrib><creatorcontrib>Zhang, Lun</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Journal of scientific computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Haiyong</au><au>Zhang, Lun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Jacobi Polynomials on the Bernstein Ellipse</atitle><jtitle>Journal of scientific computing</jtitle><stitle>J Sci Comput</stitle><date>2018-04-01</date><risdate>2018</risdate><volume>75</volume><issue>1</issue><spage>457</spage><epage>477</epage><pages>457-477</pages><issn>0885-7474</issn><eissn>1573-7691</eissn><abstract>In this paper, we are concerned with Jacobi polynomials
P
n
(
α
,
β
)
(
x
)
on the Bernstein ellipse with motivation mainly coming from recent studies of convergence rate of spectral interpolation. An explicit representation of
P
n
(
α
,
β
)
(
x
)
is derived in the variable of parametrization. This formula further allows us to show that the maximum value of
P
n
(
α
,
β
)
(
z
)
over the Bernstein ellipse is attained at one of the endpoints of the major axis if
α
+
β
≥
-
1
. For the minimum value, we are able to show that for a large class of Gegenbauer polynomials (i.e.,
α
=
β
), it is attained at two endpoints of the minor axis. These results particularly extend those previously known only for some special cases. Moreover, we obtain a more refined asymptotic estimate for Jacobi polynomials on the Bernstein ellipse.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10915-017-0542-4</doi><tpages>21</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0885-7474 |
ispartof | Journal of scientific computing, 2018-04, Vol.75 (1), p.457-477 |
issn | 0885-7474 1573-7691 |
language | eng |
recordid | cdi_proquest_journals_2918314259 |
source | SpringerLink Journals - AutoHoldings; ProQuest Central |
subjects | Algorithms Computational Mathematics and Numerical Analysis Interpolation Mathematical and Computational Engineering Mathematical and Computational Physics Mathematics Mathematics and Statistics Parameterization Polynomials Theoretical |
title | Jacobi Polynomials on the Bernstein Ellipse |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T11%3A14%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Jacobi%20Polynomials%20on%20the%20Bernstein%20Ellipse&rft.jtitle=Journal%20of%20scientific%20computing&rft.au=Wang,%20Haiyong&rft.date=2018-04-01&rft.volume=75&rft.issue=1&rft.spage=457&rft.epage=477&rft.pages=457-477&rft.issn=0885-7474&rft.eissn=1573-7691&rft_id=info:doi/10.1007/s10915-017-0542-4&rft_dat=%3Cproquest_cross%3E2918314259%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918314259&rft_id=info:pmid/&rfr_iscdi=true |