Jacobi Polynomials on the Bernstein Ellipse

In this paper, we are concerned with Jacobi polynomials P n ( α , β ) ( x ) on the Bernstein ellipse with motivation mainly coming from recent studies of convergence rate of spectral interpolation. An explicit representation of P n ( α , β ) ( x ) is derived in the variable of parametrization. This...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of scientific computing 2018-04, Vol.75 (1), p.457-477
Hauptverfasser: Wang, Haiyong, Zhang, Lun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we are concerned with Jacobi polynomials P n ( α , β ) ( x ) on the Bernstein ellipse with motivation mainly coming from recent studies of convergence rate of spectral interpolation. An explicit representation of P n ( α , β ) ( x ) is derived in the variable of parametrization. This formula further allows us to show that the maximum value of P n ( α , β ) ( z ) over the Bernstein ellipse is attained at one of the endpoints of the major axis if α + β ≥ - 1 . For the minimum value, we are able to show that for a large class of Gegenbauer polynomials (i.e., α = β ), it is attained at two endpoints of the minor axis. These results particularly extend those previously known only for some special cases. Moreover, we obtain a more refined asymptotic estimate for Jacobi polynomials on the Bernstein ellipse.
ISSN:0885-7474
1573-7691
DOI:10.1007/s10915-017-0542-4