The Superconvergence Phenomenon and Proof of the MAC Scheme for the Stokes Equations on Non-uniform Rectangular Meshes
For decades, the widely used finite difference method on staggered grids, also known as the marker and cell (MAC) method, has been one of the simplest and most effective numerical schemes for solving the Stokes equations and Navier–Stokes equations. Its superconvergence on uniform meshes has been ob...
Gespeichert in:
Veröffentlicht in: | Journal of scientific computing 2015-10, Vol.65 (1), p.341-362 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | For decades, the widely used finite difference method on staggered grids, also known as the marker and cell (MAC) method, has been one of the simplest and most effective numerical schemes for solving the Stokes equations and Navier–Stokes equations. Its superconvergence on uniform meshes has been observed by Nicolaides (SIAM J Numer Anal 29(6):1579–1591,
1992
), but the rigorous proof is never given. Its behavior on non-uniform grids is not well studied, since most publications only consider uniform grids. In this work, we develop the MAC scheme on non-uniform rectangular meshes, and for the first time we theoretically prove that the superconvergence phenomenon (i.e., second order convergence in the
L
2
norm for both velocity and pressure) holds true for the MAC method on non-uniform rectangular meshes. With a careful and accurate analysis of various sources of errors, we observe that even though the local truncation errors are only first order in terms of mesh size, the global errors after summation are second order due to the amazing cancellation of local errors. This observation leads to the elegant superconvergence analysis even with non-uniform meshes. Numerical results are given to verify our theoretical analysis. |
---|---|
ISSN: | 0885-7474 1573-7691 |
DOI: | 10.1007/s10915-014-9963-5 |