Recovering Exponential Accuracy from Non-harmonic Fourier Data Through Spectral Reprojection

Spectral reprojection techniques make possible the recovery of exponential accuracy from the partial Fourier sum of a piecewise-analytic function, essentially conquering the Gibbs phenomenon for this class of functions. This paper extends this result to non-harmonic partial sums, proving that spectr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of scientific computing 2012-04, Vol.51 (1), p.158-182
Hauptverfasser: Gelb, Anne, Hines, Taylor
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Spectral reprojection techniques make possible the recovery of exponential accuracy from the partial Fourier sum of a piecewise-analytic function, essentially conquering the Gibbs phenomenon for this class of functions. This paper extends this result to non-harmonic partial sums, proving that spectral reprojection can reduce the Gibbs phenomenon in non-harmonic reconstruction as well as remove reconstruction artifacts due to erratic sampling. We are particularly interested in the case where the Fourier samples form a frame. These techniques are motivated by a desire to improve the quality of images reconstructed from non-uniform Fourier data, such as magnetic resonance (MR) images.
ISSN:0885-7474
1573-7691
DOI:10.1007/s10915-011-9502-6