Recovering Exponential Accuracy from Non-harmonic Fourier Data Through Spectral Reprojection
Spectral reprojection techniques make possible the recovery of exponential accuracy from the partial Fourier sum of a piecewise-analytic function, essentially conquering the Gibbs phenomenon for this class of functions. This paper extends this result to non-harmonic partial sums, proving that spectr...
Gespeichert in:
Veröffentlicht in: | Journal of scientific computing 2012-04, Vol.51 (1), p.158-182 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Spectral reprojection techniques make possible the recovery of exponential accuracy from the partial Fourier sum of a piecewise-analytic function, essentially conquering the Gibbs phenomenon for this class of functions. This paper extends this result to non-harmonic partial sums, proving that spectral reprojection can reduce the Gibbs phenomenon in non-harmonic reconstruction as well as remove reconstruction artifacts due to erratic sampling. We are particularly interested in the case where the Fourier samples form a frame. These techniques are motivated by a desire to improve the quality of images reconstructed from non-uniform Fourier data, such as magnetic resonance (MR) images. |
---|---|
ISSN: | 0885-7474 1573-7691 |
DOI: | 10.1007/s10915-011-9502-6 |