A Coupling of Local Discontinuous Galerkin and Natural Boundary Element Method for Exterior Problems
In this paper, we apply the coupling of local discontinuous Galerkin (LDG) and natural boundary element method(NBEM) to solve a two-dimensional exterior problem. As a consequence, the main features of LDG and NBEM are maintained and hence the coupled approach benefits from the advantages of both met...
Gespeichert in:
Veröffentlicht in: | Journal of scientific computing 2012-12, Vol.53 (3), p.512-527 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we apply the coupling of local discontinuous Galerkin (LDG) and natural boundary element method(NBEM) to solve a two-dimensional exterior problem. As a consequence, the main features of LDG and NBEM are maintained and hence the coupled approach benefits from the advantages of both methods. Referring to Gatica et al. (Math. Comput. 79(271):1369–1394,
2010
), we employ LDG subspaces whose functions are continuous on the coupling boundary. In this way, the primitive variables become the only boundary unknown, and hence the total number of unknown functions is reduced. We prove the stability of the new discrete scheme and derive an a priori error estimate in the energy norm. Some numerical examples conforming the theoretical results are provided. |
---|---|
ISSN: | 0885-7474 1573-7691 |
DOI: | 10.1007/s10915-012-9584-9 |