Two-Level Non-Overlapping Schwarz Preconditioners for a Discontinuous Galerkin Approximation of the Biharmonic Equation

We present some two-level non-overlapping additive and multiplicative Schwarz methods for a discontinuous Galerkin method for solving the biharmonic equation. We show that the condition numbers of the preconditioned systems are of the order O( H3/h3) for the non-overlapping Schwarz methods, where h...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of scientific computing 2005-06, Vol.22-23 (1-3), p.289-314
Hauptverfasser: Feng, Xiaobing, Karakashian, Ohannes A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present some two-level non-overlapping additive and multiplicative Schwarz methods for a discontinuous Galerkin method for solving the biharmonic equation. We show that the condition numbers of the preconditioned systems are of the order O( H3/h3) for the non-overlapping Schwarz methods, where h and H stand for the fine mesh size and the coarse mesh size, respectively. The analysis requires establishing an interpolation result for Sobolev norms and Poincaré–Friedrichs type inequalities for totally discontinuous piecewise polynomial functions. It also requires showing some approximation properties of the multilevel hierarchy of discontinuous Galerkin finite element spaces.
ISSN:0885-7474
1573-7691
DOI:10.1007/s10915-004-4141-9