Green Synthesis of Selenium Nanoparticles Using Solanum nigrum Fruit Extract and its Anti-cancer Efficacy Against Triple Negative Breast Cancer
The contemporary study aims at the synthesis of selenium nanoparticles (SeNPs) through green synthesis by utilizing fruit extract of Solanum nigrum and to evaluate its anti-oxidant, anti-bacterial, and anti-cancer activity. Then the synthesized SeNPs had been characterized with UV–Vis spectroscopy,...
Gespeichert in:
Veröffentlicht in: | Journal of cluster science 2023-07, Vol.34 (4), p.1709-1719 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The contemporary study aims at the synthesis of selenium nanoparticles (SeNPs) through green synthesis by utilizing fruit extract of
Solanum nigrum
and to evaluate its anti-oxidant, anti-bacterial, and anti-cancer activity. Then the synthesized SeNPs had been characterized with UV–Vis spectroscopy, FTIR, XRD, Dynamic Light Scattering, Zeta potential and scanning electron microscopy. The results had shown the successful synthesis of SeNPs which was found to be spherical in shape and has a particle diameter of 87 nm. Further, the FTIR spectrum confirms the presence of various functional groups of the plant extract, which could probably influence the reduction and stabilization of SeNPs. Also the synthesized SeNPs had exhibited a significant dose dependent reduction of free radicals as depicted by DPPH assay. Further the SeNPs had inhibited the proliferation of selected gram-positive and gram- negative bacteria in a dose dependent way indicating their significant anti-bacterial property. Then, the anti-cancer efficacy of the SeNPs against the triple negative breast cancer was analysed by MTT and was found to exhibit an IC50 of 19 µg/ml. These results collectively displays the bioactive potential including anti-oxidant, anti-bacterial, and anti-cancer efficacy posed by the SeNPs which could possibly be explored further for their efficient therapeutics in near future. |
---|---|
ISSN: | 1040-7278 1572-8862 |
DOI: | 10.1007/s10876-022-02334-2 |