Design and analysis of 3 × 3 reversible quantum gates
Quantum computing is a modern technology that uses the laws of quantum mechanics to tackle issues like irreversibility and power dissipation, which are beyond the scope of traditional computing paradigms. To exploit quantum physics in many application fields, circuit design using reversible gates is...
Gespeichert in:
Veröffentlicht in: | Journal of computational electronics 2023-02, Vol.22 (1), p.266-275 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 275 |
---|---|
container_issue | 1 |
container_start_page | 266 |
container_title | Journal of computational electronics |
container_volume | 22 |
creator | Bhat, Hilal A. Khanday, Farooq A. Kaushik, Brajesh K. Shah, Khurshed A. |
description | Quantum computing is a modern technology that uses the laws of quantum mechanics to tackle issues like irreversibility and power dissipation, which are beyond the scope of traditional computing paradigms. To exploit quantum physics in many application fields, circuit design using reversible gates is a crucial task. In this paper, quantum implementation of three-input/three-output (3 × 3) reversible gates is presented. The functional matrices of most of the gates are presented for the first time in this paper. In addition, the quantum implementation of URG, FRSG1, R and JTF1 gates, which find importance in various practical applications, is presented for the first time in this paper. The paper concludes with a comparison of the performance parameters of reversible gates for efficient quantum circuit realization. It is shown that each gate has additional advantages in valid perspectives. The paper thus provides a useful library of 3 × 3 reversible gates for the implementation of higher-order quantum circuit design. |
doi_str_mv | 10.1007/s10825-022-01980-z |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918278037</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918278037</sourcerecordid><originalsourceid>FETCH-LOGICAL-c164z-f8de567e3707982a452f789a8b32cd7fb14694a566247da2ceb39b91ceeb0cea3</originalsourceid><addsrcrecordid>eNp9kL1OwzAUhS0EEqXwAkyRmA3X10lss6HyKyGxwGw5yU2Vqk1au0FqJ1aegAfiTXgSXILExnB_hnOOjj7GTgWcCwB1EQRozDggchBGA9_usZHIFHItpNrf_bnhGjA7ZEchzAAQMBUjdnlNoZm2iWurOG6-CU1IujqRX2_vnx9xycTTK_nQFHNKVr1r1_0imbo1hWN2ULt5oJPfO2YvtzfPk3v--HT3MLl65KXI0y2vdUVZrkgqUEajSzOslTZOFxLLStWFSHOTuizPMVWVw5IKaQojSqICSnJyzM6G3KXvVj2FtZ11vY9dg0UjNCoNUkUVDqrSdyF4qu3SNwvnN1aA3TGyAyMbGdkfRnYbTXIwhShup-T_ov9xfQM-e2ur</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918278037</pqid></control><display><type>article</type><title>Design and analysis of 3 × 3 reversible quantum gates</title><source>SpringerLink</source><source>ProQuest Central</source><creator>Bhat, Hilal A. ; Khanday, Farooq A. ; Kaushik, Brajesh K. ; Shah, Khurshed A.</creator><creatorcontrib>Bhat, Hilal A. ; Khanday, Farooq A. ; Kaushik, Brajesh K. ; Shah, Khurshed A.</creatorcontrib><description>Quantum computing is a modern technology that uses the laws of quantum mechanics to tackle issues like irreversibility and power dissipation, which are beyond the scope of traditional computing paradigms. To exploit quantum physics in many application fields, circuit design using reversible gates is a crucial task. In this paper, quantum implementation of three-input/three-output (3 × 3) reversible gates is presented. The functional matrices of most of the gates are presented for the first time in this paper. In addition, the quantum implementation of URG, FRSG1, R and JTF1 gates, which find importance in various practical applications, is presented for the first time in this paper. The paper concludes with a comparison of the performance parameters of reversible gates for efficient quantum circuit realization. It is shown that each gate has additional advantages in valid perspectives. The paper thus provides a useful library of 3 × 3 reversible gates for the implementation of higher-order quantum circuit design.</description><identifier>ISSN: 1569-8025</identifier><identifier>EISSN: 1572-8137</identifier><identifier>DOI: 10.1007/s10825-022-01980-z</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Circuit design ; Circuits ; Computers ; Electrical Engineering ; Energy dissipation ; Engineering ; Gates (circuits) ; Logic ; Mathematical and Computational Engineering ; Mathematical and Computational Physics ; Mechanical Engineering ; Nanotechnology ; Optical and Electronic Materials ; Quantum computing ; Quantum mechanics ; Quantum theory ; Theoretical</subject><ispartof>Journal of computational electronics, 2023-02, Vol.22 (1), p.266-275</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c164z-f8de567e3707982a452f789a8b32cd7fb14694a566247da2ceb39b91ceeb0cea3</citedby><cites>FETCH-LOGICAL-c164z-f8de567e3707982a452f789a8b32cd7fb14694a566247da2ceb39b91ceeb0cea3</cites><orcidid>0000-0002-2514-5703</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10825-022-01980-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2918278037?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,21387,27923,27924,33743,41487,42556,43804,51318,64384,64388,72240</link.rule.ids></links><search><creatorcontrib>Bhat, Hilal A.</creatorcontrib><creatorcontrib>Khanday, Farooq A.</creatorcontrib><creatorcontrib>Kaushik, Brajesh K.</creatorcontrib><creatorcontrib>Shah, Khurshed A.</creatorcontrib><title>Design and analysis of 3 × 3 reversible quantum gates</title><title>Journal of computational electronics</title><addtitle>J Comput Electron</addtitle><description>Quantum computing is a modern technology that uses the laws of quantum mechanics to tackle issues like irreversibility and power dissipation, which are beyond the scope of traditional computing paradigms. To exploit quantum physics in many application fields, circuit design using reversible gates is a crucial task. In this paper, quantum implementation of three-input/three-output (3 × 3) reversible gates is presented. The functional matrices of most of the gates are presented for the first time in this paper. In addition, the quantum implementation of URG, FRSG1, R and JTF1 gates, which find importance in various practical applications, is presented for the first time in this paper. The paper concludes with a comparison of the performance parameters of reversible gates for efficient quantum circuit realization. It is shown that each gate has additional advantages in valid perspectives. The paper thus provides a useful library of 3 × 3 reversible gates for the implementation of higher-order quantum circuit design.</description><subject>Circuit design</subject><subject>Circuits</subject><subject>Computers</subject><subject>Electrical Engineering</subject><subject>Energy dissipation</subject><subject>Engineering</subject><subject>Gates (circuits)</subject><subject>Logic</subject><subject>Mathematical and Computational Engineering</subject><subject>Mathematical and Computational Physics</subject><subject>Mechanical Engineering</subject><subject>Nanotechnology</subject><subject>Optical and Electronic Materials</subject><subject>Quantum computing</subject><subject>Quantum mechanics</subject><subject>Quantum theory</subject><subject>Theoretical</subject><issn>1569-8025</issn><issn>1572-8137</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kL1OwzAUhS0EEqXwAkyRmA3X10lss6HyKyGxwGw5yU2Vqk1au0FqJ1aegAfiTXgSXILExnB_hnOOjj7GTgWcCwB1EQRozDggchBGA9_usZHIFHItpNrf_bnhGjA7ZEchzAAQMBUjdnlNoZm2iWurOG6-CU1IujqRX2_vnx9xycTTK_nQFHNKVr1r1_0imbo1hWN2ULt5oJPfO2YvtzfPk3v--HT3MLl65KXI0y2vdUVZrkgqUEajSzOslTZOFxLLStWFSHOTuizPMVWVw5IKaQojSqICSnJyzM6G3KXvVj2FtZ11vY9dg0UjNCoNUkUVDqrSdyF4qu3SNwvnN1aA3TGyAyMbGdkfRnYbTXIwhShup-T_ov9xfQM-e2ur</recordid><startdate>20230201</startdate><enddate>20230201</enddate><creator>Bhat, Hilal A.</creator><creator>Khanday, Farooq A.</creator><creator>Kaushik, Brajesh K.</creator><creator>Shah, Khurshed A.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0002-2514-5703</orcidid></search><sort><creationdate>20230201</creationdate><title>Design and analysis of 3 × 3 reversible quantum gates</title><author>Bhat, Hilal A. ; Khanday, Farooq A. ; Kaushik, Brajesh K. ; Shah, Khurshed A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c164z-f8de567e3707982a452f789a8b32cd7fb14694a566247da2ceb39b91ceeb0cea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Circuit design</topic><topic>Circuits</topic><topic>Computers</topic><topic>Electrical Engineering</topic><topic>Energy dissipation</topic><topic>Engineering</topic><topic>Gates (circuits)</topic><topic>Logic</topic><topic>Mathematical and Computational Engineering</topic><topic>Mathematical and Computational Physics</topic><topic>Mechanical Engineering</topic><topic>Nanotechnology</topic><topic>Optical and Electronic Materials</topic><topic>Quantum computing</topic><topic>Quantum mechanics</topic><topic>Quantum theory</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bhat, Hilal A.</creatorcontrib><creatorcontrib>Khanday, Farooq A.</creatorcontrib><creatorcontrib>Kaushik, Brajesh K.</creatorcontrib><creatorcontrib>Shah, Khurshed A.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><jtitle>Journal of computational electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bhat, Hilal A.</au><au>Khanday, Farooq A.</au><au>Kaushik, Brajesh K.</au><au>Shah, Khurshed A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design and analysis of 3 × 3 reversible quantum gates</atitle><jtitle>Journal of computational electronics</jtitle><stitle>J Comput Electron</stitle><date>2023-02-01</date><risdate>2023</risdate><volume>22</volume><issue>1</issue><spage>266</spage><epage>275</epage><pages>266-275</pages><issn>1569-8025</issn><eissn>1572-8137</eissn><abstract>Quantum computing is a modern technology that uses the laws of quantum mechanics to tackle issues like irreversibility and power dissipation, which are beyond the scope of traditional computing paradigms. To exploit quantum physics in many application fields, circuit design using reversible gates is a crucial task. In this paper, quantum implementation of three-input/three-output (3 × 3) reversible gates is presented. The functional matrices of most of the gates are presented for the first time in this paper. In addition, the quantum implementation of URG, FRSG1, R and JTF1 gates, which find importance in various practical applications, is presented for the first time in this paper. The paper concludes with a comparison of the performance parameters of reversible gates for efficient quantum circuit realization. It is shown that each gate has additional advantages in valid perspectives. The paper thus provides a useful library of 3 × 3 reversible gates for the implementation of higher-order quantum circuit design.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10825-022-01980-z</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-2514-5703</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1569-8025 |
ispartof | Journal of computational electronics, 2023-02, Vol.22 (1), p.266-275 |
issn | 1569-8025 1572-8137 |
language | eng |
recordid | cdi_proquest_journals_2918278037 |
source | SpringerLink; ProQuest Central |
subjects | Circuit design Circuits Computers Electrical Engineering Energy dissipation Engineering Gates (circuits) Logic Mathematical and Computational Engineering Mathematical and Computational Physics Mechanical Engineering Nanotechnology Optical and Electronic Materials Quantum computing Quantum mechanics Quantum theory Theoretical |
title | Design and analysis of 3 × 3 reversible quantum gates |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T15%3A55%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20and%20analysis%20of%203%E2%80%89%C3%97%E2%80%893%20reversible%20quantum%20gates&rft.jtitle=Journal%20of%20computational%20electronics&rft.au=Bhat,%20Hilal%20A.&rft.date=2023-02-01&rft.volume=22&rft.issue=1&rft.spage=266&rft.epage=275&rft.pages=266-275&rft.issn=1569-8025&rft.eissn=1572-8137&rft_id=info:doi/10.1007/s10825-022-01980-z&rft_dat=%3Cproquest_cross%3E2918278037%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918278037&rft_id=info:pmid/&rfr_iscdi=true |