Spintronic devices: a promising alternative to CMOS devices

The field of spintronics has attracted tremendous attention recently owing to its ability to offer a solution for the present-day problem of increased power dissipation in electronic circuits while scaling down the technology. Spintronic-based structures utilize electron’s spin degree of freedom, wh...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational electronics 2021-04, Vol.20 (2), p.805-837
Hauptverfasser: Barla, Prashanth, Joshi, Vinod Kumar, Bhat, Somashekara
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The field of spintronics has attracted tremendous attention recently owing to its ability to offer a solution for the present-day problem of increased power dissipation in electronic circuits while scaling down the technology. Spintronic-based structures utilize electron’s spin degree of freedom, which makes it unique with zero standby leakage, low power consumption, infinite endurance, a good read and write performance, nonvolatile nature, and easy 3D integration capability with the present-day electronic circuits based on CMOS technology. All these advantages have catapulted the aggressive research activities to employ spintronic devices in memory units and also revamped the concept of processing-in-memory architecture for the future. This review article explores the essential milestones in the evolutionary field of spintronics. It includes various physical phenomena such as the giant magnetoresistance effect, tunnel magnetoresistance effect, spin-transfer torque, spin Hall effect, voltage-controlled magnetic anisotropy effect, and current-induced domain wall/skyrmions motion. Further, various spintronic devices such as spin valves, magnetic tunnel junctions, domain wall-based race track memory, all spin logic devices, and recently buzzing skyrmions and hybrid magnetic/silicon-based devices are discussed. A detailed description of various switching mechanisms to write the information in these spintronic devices is also reviewed. An overview of hybrid magnetic /silicon-based devices that have the capability to be used for processing-in-memory (logic-in-memory) architecture in the immediate future is described in the end. In this article, we have attempted to introduce a brief history, current status, and future prospectus of the spintronics field for a novice.
ISSN:1569-8025
1572-8137
DOI:10.1007/s10825-020-01648-6