An ultra-low material loss ellipse core-based photonic crystal fiber for terahertz wave guiding: design and analysis
In this research work, we report a new design model of quasi-shaped cladding areas with rotated-hexa-based elliptical shaped core areas in photonic crystal fiber (Q-PCF) for terahertz waves of communication signals. Here, we present a six-layer circular air hole in the quasi-shape of cladding region...
Gespeichert in:
Veröffentlicht in: | Journal of computational electronics 2021-08, Vol.20 (4), p.1541-1548 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1548 |
---|---|
container_issue | 4 |
container_start_page | 1541 |
container_title | Journal of computational electronics |
container_volume | 20 |
creator | Mollah, Mohammad Sarwar Hossain Abdullah-Al-Shafi, Md Hossain, Md. Selim Sen, Shuvo |
description | In this research work, we report a new design model of quasi-shaped cladding areas with rotated-hexa-based elliptical shaped core areas in photonic crystal fiber (Q-PCF) for terahertz waves of communication signals. Here, we present a six-layer circular air hole in the quasi-shape of cladding regions with two layers of rotated-hexa-based elliptical shaped air holes in the core regions of the Q-PCF for analysis of communication networks in the terahertz regime. Additionally, perfectly matched layers and the finite element method based on the COMSOL software are used to design this Q-PCF. For short- and wideband communication sectors, our proposed Q-PCF is highly useful, as it reduces ultralow effective material loss (EML), confinement loss, and scattering loss in the terahertz regime. After analysis of the numerical results, our suggested Q-PCF shows an ultralow EML of 0.0159 cm
−1
, power fraction in the core area of 74%, large effective area of 5.49 × 10
–8
m
2
, confinement loss of 3.22 × 10
–12
cm
−1
, and scattering loss of 1.23 × 10
–10
at 1 THz frequency. Moreover, our proposed Q-PCF demonstrates single-mode propagation by the graphical results of the V-parameter over a frequency range of 0.80–3 THz. Our results suggest, we can clearly say that the reported Q-PCF may be highly appropriate for terahertz wave propagation for many communication networks. |
doi_str_mv | 10.1007/s10825-021-01720-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918274829</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918274829</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-d644df5c8de90ed02571bfe5244bcb6ff3222470356e68b07615d2aec0c44baa3</originalsourceid><addsrcrecordid>eNp9kEtPwzAQhCMEEqXwBzhZ4mywnYcTblXFS6rEBc6WY69TV2kcbJeq_HpcgsSNw2r38M1odrLsmpJbSgi_C5TUrMSEUUwoZwQ3J9mMlpzhmub89HhXDa4JK8-zixA2hDDCCjrL4mJAuz56iXu3R1sZwVvZo96FgKDv7RgAKecBtzKARuPaRTdYhZQ_hJhAY1vwyDiPklKuwccvtJefgLqd1Xbo7pGGYLsByUGnkf0h2HCZnRnZB7j63fPs_fHhbfmMV69PL8vFCqucNhHrqii0KVWtoSGgU3hOWwMlK4pWtZUxOWOs4CQvK6jqlvCKlppJUEQlQsp8nt1MvqN3HzsIUWzczqcQQbCG1owXNWsSxSZK-fS1ByNGb7fSHwQl4tiumNoVqV3x0644ivJJFBI8dOD_rP9RfQNyNX7P</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918274829</pqid></control><display><type>article</type><title>An ultra-low material loss ellipse core-based photonic crystal fiber for terahertz wave guiding: design and analysis</title><source>Springer Nature - Complete Springer Journals</source><source>ProQuest Central</source><creator>Mollah, Mohammad Sarwar Hossain ; Abdullah-Al-Shafi, Md ; Hossain, Md. Selim ; Sen, Shuvo</creator><creatorcontrib>Mollah, Mohammad Sarwar Hossain ; Abdullah-Al-Shafi, Md ; Hossain, Md. Selim ; Sen, Shuvo</creatorcontrib><description>In this research work, we report a new design model of quasi-shaped cladding areas with rotated-hexa-based elliptical shaped core areas in photonic crystal fiber (Q-PCF) for terahertz waves of communication signals. Here, we present a six-layer circular air hole in the quasi-shape of cladding regions with two layers of rotated-hexa-based elliptical shaped air holes in the core regions of the Q-PCF for analysis of communication networks in the terahertz regime. Additionally, perfectly matched layers and the finite element method based on the COMSOL software are used to design this Q-PCF. For short- and wideband communication sectors, our proposed Q-PCF is highly useful, as it reduces ultralow effective material loss (EML), confinement loss, and scattering loss in the terahertz regime. After analysis of the numerical results, our suggested Q-PCF shows an ultralow EML of 0.0159 cm
−1
, power fraction in the core area of 74%, large effective area of 5.49 × 10
–8
m
2
, confinement loss of 3.22 × 10
–12
cm
−1
, and scattering loss of 1.23 × 10
–10
at 1 THz frequency. Moreover, our proposed Q-PCF demonstrates single-mode propagation by the graphical results of the V-parameter over a frequency range of 0.80–3 THz. Our results suggest, we can clearly say that the reported Q-PCF may be highly appropriate for terahertz wave propagation for many communication networks.</description><identifier>ISSN: 1569-8025</identifier><identifier>EISSN: 1572-8137</identifier><identifier>DOI: 10.1007/s10825-021-01720-9</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Cladding ; Communication ; Communication networks ; Confinement ; Crystal fibers ; Design ; Electric fields ; Electrical Engineering ; Engineering ; Finite element analysis ; Finite element method ; Frequency ranges ; Mathematical and Computational Engineering ; Mathematical and Computational Physics ; Mechanical Engineering ; Optical and Electronic Materials ; Optical properties ; Perfectly matched layers ; Photonic crystals ; Porosity ; Propagation modes ; Radiation ; Scattering ; Software ; Terahertz frequencies ; Theoretical ; Wave propagation ; Wideband communications</subject><ispartof>Journal of computational electronics, 2021-08, Vol.20 (4), p.1541-1548</ispartof><rights>This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply 2021</rights><rights>This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-d644df5c8de90ed02571bfe5244bcb6ff3222470356e68b07615d2aec0c44baa3</citedby><cites>FETCH-LOGICAL-c319t-d644df5c8de90ed02571bfe5244bcb6ff3222470356e68b07615d2aec0c44baa3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10825-021-01720-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2918274829?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,21368,27902,27903,33722,41466,42535,43783,51296</link.rule.ids></links><search><creatorcontrib>Mollah, Mohammad Sarwar Hossain</creatorcontrib><creatorcontrib>Abdullah-Al-Shafi, Md</creatorcontrib><creatorcontrib>Hossain, Md. Selim</creatorcontrib><creatorcontrib>Sen, Shuvo</creatorcontrib><title>An ultra-low material loss ellipse core-based photonic crystal fiber for terahertz wave guiding: design and analysis</title><title>Journal of computational electronics</title><addtitle>J Comput Electron</addtitle><description>In this research work, we report a new design model of quasi-shaped cladding areas with rotated-hexa-based elliptical shaped core areas in photonic crystal fiber (Q-PCF) for terahertz waves of communication signals. Here, we present a six-layer circular air hole in the quasi-shape of cladding regions with two layers of rotated-hexa-based elliptical shaped air holes in the core regions of the Q-PCF for analysis of communication networks in the terahertz regime. Additionally, perfectly matched layers and the finite element method based on the COMSOL software are used to design this Q-PCF. For short- and wideband communication sectors, our proposed Q-PCF is highly useful, as it reduces ultralow effective material loss (EML), confinement loss, and scattering loss in the terahertz regime. After analysis of the numerical results, our suggested Q-PCF shows an ultralow EML of 0.0159 cm
−1
, power fraction in the core area of 74%, large effective area of 5.49 × 10
–8
m
2
, confinement loss of 3.22 × 10
–12
cm
−1
, and scattering loss of 1.23 × 10
–10
at 1 THz frequency. Moreover, our proposed Q-PCF demonstrates single-mode propagation by the graphical results of the V-parameter over a frequency range of 0.80–3 THz. Our results suggest, we can clearly say that the reported Q-PCF may be highly appropriate for terahertz wave propagation for many communication networks.</description><subject>Cladding</subject><subject>Communication</subject><subject>Communication networks</subject><subject>Confinement</subject><subject>Crystal fibers</subject><subject>Design</subject><subject>Electric fields</subject><subject>Electrical Engineering</subject><subject>Engineering</subject><subject>Finite element analysis</subject><subject>Finite element method</subject><subject>Frequency ranges</subject><subject>Mathematical and Computational Engineering</subject><subject>Mathematical and Computational Physics</subject><subject>Mechanical Engineering</subject><subject>Optical and Electronic Materials</subject><subject>Optical properties</subject><subject>Perfectly matched layers</subject><subject>Photonic crystals</subject><subject>Porosity</subject><subject>Propagation modes</subject><subject>Radiation</subject><subject>Scattering</subject><subject>Software</subject><subject>Terahertz frequencies</subject><subject>Theoretical</subject><subject>Wave propagation</subject><subject>Wideband communications</subject><issn>1569-8025</issn><issn>1572-8137</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kEtPwzAQhCMEEqXwBzhZ4mywnYcTblXFS6rEBc6WY69TV2kcbJeq_HpcgsSNw2r38M1odrLsmpJbSgi_C5TUrMSEUUwoZwQ3J9mMlpzhmub89HhXDa4JK8-zixA2hDDCCjrL4mJAuz56iXu3R1sZwVvZo96FgKDv7RgAKecBtzKARuPaRTdYhZQ_hJhAY1vwyDiPklKuwccvtJefgLqd1Xbo7pGGYLsByUGnkf0h2HCZnRnZB7j63fPs_fHhbfmMV69PL8vFCqucNhHrqii0KVWtoSGgU3hOWwMlK4pWtZUxOWOs4CQvK6jqlvCKlppJUEQlQsp8nt1MvqN3HzsIUWzczqcQQbCG1owXNWsSxSZK-fS1ByNGb7fSHwQl4tiumNoVqV3x0644ivJJFBI8dOD_rP9RfQNyNX7P</recordid><startdate>20210801</startdate><enddate>20210801</enddate><creator>Mollah, Mohammad Sarwar Hossain</creator><creator>Abdullah-Al-Shafi, Md</creator><creator>Hossain, Md. Selim</creator><creator>Sen, Shuvo</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope></search><sort><creationdate>20210801</creationdate><title>An ultra-low material loss ellipse core-based photonic crystal fiber for terahertz wave guiding: design and analysis</title><author>Mollah, Mohammad Sarwar Hossain ; Abdullah-Al-Shafi, Md ; Hossain, Md. Selim ; Sen, Shuvo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-d644df5c8de90ed02571bfe5244bcb6ff3222470356e68b07615d2aec0c44baa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Cladding</topic><topic>Communication</topic><topic>Communication networks</topic><topic>Confinement</topic><topic>Crystal fibers</topic><topic>Design</topic><topic>Electric fields</topic><topic>Electrical Engineering</topic><topic>Engineering</topic><topic>Finite element analysis</topic><topic>Finite element method</topic><topic>Frequency ranges</topic><topic>Mathematical and Computational Engineering</topic><topic>Mathematical and Computational Physics</topic><topic>Mechanical Engineering</topic><topic>Optical and Electronic Materials</topic><topic>Optical properties</topic><topic>Perfectly matched layers</topic><topic>Photonic crystals</topic><topic>Porosity</topic><topic>Propagation modes</topic><topic>Radiation</topic><topic>Scattering</topic><topic>Software</topic><topic>Terahertz frequencies</topic><topic>Theoretical</topic><topic>Wave propagation</topic><topic>Wideband communications</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mollah, Mohammad Sarwar Hossain</creatorcontrib><creatorcontrib>Abdullah-Al-Shafi, Md</creatorcontrib><creatorcontrib>Hossain, Md. Selim</creatorcontrib><creatorcontrib>Sen, Shuvo</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><jtitle>Journal of computational electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mollah, Mohammad Sarwar Hossain</au><au>Abdullah-Al-Shafi, Md</au><au>Hossain, Md. Selim</au><au>Sen, Shuvo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An ultra-low material loss ellipse core-based photonic crystal fiber for terahertz wave guiding: design and analysis</atitle><jtitle>Journal of computational electronics</jtitle><stitle>J Comput Electron</stitle><date>2021-08-01</date><risdate>2021</risdate><volume>20</volume><issue>4</issue><spage>1541</spage><epage>1548</epage><pages>1541-1548</pages><issn>1569-8025</issn><eissn>1572-8137</eissn><abstract>In this research work, we report a new design model of quasi-shaped cladding areas with rotated-hexa-based elliptical shaped core areas in photonic crystal fiber (Q-PCF) for terahertz waves of communication signals. Here, we present a six-layer circular air hole in the quasi-shape of cladding regions with two layers of rotated-hexa-based elliptical shaped air holes in the core regions of the Q-PCF for analysis of communication networks in the terahertz regime. Additionally, perfectly matched layers and the finite element method based on the COMSOL software are used to design this Q-PCF. For short- and wideband communication sectors, our proposed Q-PCF is highly useful, as it reduces ultralow effective material loss (EML), confinement loss, and scattering loss in the terahertz regime. After analysis of the numerical results, our suggested Q-PCF shows an ultralow EML of 0.0159 cm
−1
, power fraction in the core area of 74%, large effective area of 5.49 × 10
–8
m
2
, confinement loss of 3.22 × 10
–12
cm
−1
, and scattering loss of 1.23 × 10
–10
at 1 THz frequency. Moreover, our proposed Q-PCF demonstrates single-mode propagation by the graphical results of the V-parameter over a frequency range of 0.80–3 THz. Our results suggest, we can clearly say that the reported Q-PCF may be highly appropriate for terahertz wave propagation for many communication networks.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10825-021-01720-9</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1569-8025 |
ispartof | Journal of computational electronics, 2021-08, Vol.20 (4), p.1541-1548 |
issn | 1569-8025 1572-8137 |
language | eng |
recordid | cdi_proquest_journals_2918274829 |
source | Springer Nature - Complete Springer Journals; ProQuest Central |
subjects | Cladding Communication Communication networks Confinement Crystal fibers Design Electric fields Electrical Engineering Engineering Finite element analysis Finite element method Frequency ranges Mathematical and Computational Engineering Mathematical and Computational Physics Mechanical Engineering Optical and Electronic Materials Optical properties Perfectly matched layers Photonic crystals Porosity Propagation modes Radiation Scattering Software Terahertz frequencies Theoretical Wave propagation Wideband communications |
title | An ultra-low material loss ellipse core-based photonic crystal fiber for terahertz wave guiding: design and analysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T08%3A44%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20ultra-low%20material%20loss%20ellipse%20core-based%20photonic%20crystal%20fiber%20for%20terahertz%20wave%20guiding:%20design%20and%20analysis&rft.jtitle=Journal%20of%20computational%20electronics&rft.au=Mollah,%20Mohammad%20Sarwar%20Hossain&rft.date=2021-08-01&rft.volume=20&rft.issue=4&rft.spage=1541&rft.epage=1548&rft.pages=1541-1548&rft.issn=1569-8025&rft.eissn=1572-8137&rft_id=info:doi/10.1007/s10825-021-01720-9&rft_dat=%3Cproquest_cross%3E2918274829%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918274829&rft_id=info:pmid/&rfr_iscdi=true |