An ultra-low material loss ellipse core-based photonic crystal fiber for terahertz wave guiding: design and analysis

In this research work, we report a new design model of quasi-shaped cladding areas with rotated-hexa-based elliptical shaped core areas in photonic crystal fiber (Q-PCF) for terahertz waves of communication signals. Here, we present a six-layer circular air hole in the quasi-shape of cladding region...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational electronics 2021-08, Vol.20 (4), p.1541-1548
Hauptverfasser: Mollah, Mohammad Sarwar Hossain, Abdullah-Al-Shafi, Md, Hossain, Md. Selim, Sen, Shuvo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1548
container_issue 4
container_start_page 1541
container_title Journal of computational electronics
container_volume 20
creator Mollah, Mohammad Sarwar Hossain
Abdullah-Al-Shafi, Md
Hossain, Md. Selim
Sen, Shuvo
description In this research work, we report a new design model of quasi-shaped cladding areas with rotated-hexa-based elliptical shaped core areas in photonic crystal fiber (Q-PCF) for terahertz waves of communication signals. Here, we present a six-layer circular air hole in the quasi-shape of cladding regions with two layers of rotated-hexa-based elliptical shaped air holes in the core regions of the Q-PCF for analysis of communication networks in the terahertz regime. Additionally, perfectly matched layers and the finite element method based on the COMSOL software are used to design this Q-PCF. For short- and wideband communication sectors, our proposed Q-PCF is highly useful, as it reduces ultralow effective material loss (EML), confinement loss, and scattering loss in the terahertz regime. After analysis of the numerical results, our suggested Q-PCF shows an ultralow EML of 0.0159 cm −1 , power fraction in the core area of 74%, large effective area of 5.49 × 10 –8 m 2 , confinement loss of 3.22 × 10 –12  cm −1 , and scattering loss of 1.23 × 10 –10 at 1 THz frequency. Moreover, our proposed Q-PCF demonstrates single-mode propagation by the graphical results of the V-parameter over a frequency range of 0.80–3 THz. Our results suggest, we can clearly say that the reported Q-PCF may be highly appropriate for terahertz wave propagation for many communication networks.
doi_str_mv 10.1007/s10825-021-01720-9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918274829</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918274829</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-d644df5c8de90ed02571bfe5244bcb6ff3222470356e68b07615d2aec0c44baa3</originalsourceid><addsrcrecordid>eNp9kEtPwzAQhCMEEqXwBzhZ4mywnYcTblXFS6rEBc6WY69TV2kcbJeq_HpcgsSNw2r38M1odrLsmpJbSgi_C5TUrMSEUUwoZwQ3J9mMlpzhmub89HhXDa4JK8-zixA2hDDCCjrL4mJAuz56iXu3R1sZwVvZo96FgKDv7RgAKecBtzKARuPaRTdYhZQ_hJhAY1vwyDiPklKuwccvtJefgLqd1Xbo7pGGYLsByUGnkf0h2HCZnRnZB7j63fPs_fHhbfmMV69PL8vFCqucNhHrqii0KVWtoSGgU3hOWwMlK4pWtZUxOWOs4CQvK6jqlvCKlppJUEQlQsp8nt1MvqN3HzsIUWzczqcQQbCG1owXNWsSxSZK-fS1ByNGb7fSHwQl4tiumNoVqV3x0644ivJJFBI8dOD_rP9RfQNyNX7P</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918274829</pqid></control><display><type>article</type><title>An ultra-low material loss ellipse core-based photonic crystal fiber for terahertz wave guiding: design and analysis</title><source>Springer Nature - Complete Springer Journals</source><source>ProQuest Central</source><creator>Mollah, Mohammad Sarwar Hossain ; Abdullah-Al-Shafi, Md ; Hossain, Md. Selim ; Sen, Shuvo</creator><creatorcontrib>Mollah, Mohammad Sarwar Hossain ; Abdullah-Al-Shafi, Md ; Hossain, Md. Selim ; Sen, Shuvo</creatorcontrib><description>In this research work, we report a new design model of quasi-shaped cladding areas with rotated-hexa-based elliptical shaped core areas in photonic crystal fiber (Q-PCF) for terahertz waves of communication signals. Here, we present a six-layer circular air hole in the quasi-shape of cladding regions with two layers of rotated-hexa-based elliptical shaped air holes in the core regions of the Q-PCF for analysis of communication networks in the terahertz regime. Additionally, perfectly matched layers and the finite element method based on the COMSOL software are used to design this Q-PCF. For short- and wideband communication sectors, our proposed Q-PCF is highly useful, as it reduces ultralow effective material loss (EML), confinement loss, and scattering loss in the terahertz regime. After analysis of the numerical results, our suggested Q-PCF shows an ultralow EML of 0.0159 cm −1 , power fraction in the core area of 74%, large effective area of 5.49 × 10 –8 m 2 , confinement loss of 3.22 × 10 –12  cm −1 , and scattering loss of 1.23 × 10 –10 at 1 THz frequency. Moreover, our proposed Q-PCF demonstrates single-mode propagation by the graphical results of the V-parameter over a frequency range of 0.80–3 THz. Our results suggest, we can clearly say that the reported Q-PCF may be highly appropriate for terahertz wave propagation for many communication networks.</description><identifier>ISSN: 1569-8025</identifier><identifier>EISSN: 1572-8137</identifier><identifier>DOI: 10.1007/s10825-021-01720-9</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Cladding ; Communication ; Communication networks ; Confinement ; Crystal fibers ; Design ; Electric fields ; Electrical Engineering ; Engineering ; Finite element analysis ; Finite element method ; Frequency ranges ; Mathematical and Computational Engineering ; Mathematical and Computational Physics ; Mechanical Engineering ; Optical and Electronic Materials ; Optical properties ; Perfectly matched layers ; Photonic crystals ; Porosity ; Propagation modes ; Radiation ; Scattering ; Software ; Terahertz frequencies ; Theoretical ; Wave propagation ; Wideband communications</subject><ispartof>Journal of computational electronics, 2021-08, Vol.20 (4), p.1541-1548</ispartof><rights>This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply 2021</rights><rights>This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-d644df5c8de90ed02571bfe5244bcb6ff3222470356e68b07615d2aec0c44baa3</citedby><cites>FETCH-LOGICAL-c319t-d644df5c8de90ed02571bfe5244bcb6ff3222470356e68b07615d2aec0c44baa3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10825-021-01720-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2918274829?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,21368,27902,27903,33722,41466,42535,43783,51296</link.rule.ids></links><search><creatorcontrib>Mollah, Mohammad Sarwar Hossain</creatorcontrib><creatorcontrib>Abdullah-Al-Shafi, Md</creatorcontrib><creatorcontrib>Hossain, Md. Selim</creatorcontrib><creatorcontrib>Sen, Shuvo</creatorcontrib><title>An ultra-low material loss ellipse core-based photonic crystal fiber for terahertz wave guiding: design and analysis</title><title>Journal of computational electronics</title><addtitle>J Comput Electron</addtitle><description>In this research work, we report a new design model of quasi-shaped cladding areas with rotated-hexa-based elliptical shaped core areas in photonic crystal fiber (Q-PCF) for terahertz waves of communication signals. Here, we present a six-layer circular air hole in the quasi-shape of cladding regions with two layers of rotated-hexa-based elliptical shaped air holes in the core regions of the Q-PCF for analysis of communication networks in the terahertz regime. Additionally, perfectly matched layers and the finite element method based on the COMSOL software are used to design this Q-PCF. For short- and wideband communication sectors, our proposed Q-PCF is highly useful, as it reduces ultralow effective material loss (EML), confinement loss, and scattering loss in the terahertz regime. After analysis of the numerical results, our suggested Q-PCF shows an ultralow EML of 0.0159 cm −1 , power fraction in the core area of 74%, large effective area of 5.49 × 10 –8 m 2 , confinement loss of 3.22 × 10 –12  cm −1 , and scattering loss of 1.23 × 10 –10 at 1 THz frequency. Moreover, our proposed Q-PCF demonstrates single-mode propagation by the graphical results of the V-parameter over a frequency range of 0.80–3 THz. Our results suggest, we can clearly say that the reported Q-PCF may be highly appropriate for terahertz wave propagation for many communication networks.</description><subject>Cladding</subject><subject>Communication</subject><subject>Communication networks</subject><subject>Confinement</subject><subject>Crystal fibers</subject><subject>Design</subject><subject>Electric fields</subject><subject>Electrical Engineering</subject><subject>Engineering</subject><subject>Finite element analysis</subject><subject>Finite element method</subject><subject>Frequency ranges</subject><subject>Mathematical and Computational Engineering</subject><subject>Mathematical and Computational Physics</subject><subject>Mechanical Engineering</subject><subject>Optical and Electronic Materials</subject><subject>Optical properties</subject><subject>Perfectly matched layers</subject><subject>Photonic crystals</subject><subject>Porosity</subject><subject>Propagation modes</subject><subject>Radiation</subject><subject>Scattering</subject><subject>Software</subject><subject>Terahertz frequencies</subject><subject>Theoretical</subject><subject>Wave propagation</subject><subject>Wideband communications</subject><issn>1569-8025</issn><issn>1572-8137</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kEtPwzAQhCMEEqXwBzhZ4mywnYcTblXFS6rEBc6WY69TV2kcbJeq_HpcgsSNw2r38M1odrLsmpJbSgi_C5TUrMSEUUwoZwQ3J9mMlpzhmub89HhXDa4JK8-zixA2hDDCCjrL4mJAuz56iXu3R1sZwVvZo96FgKDv7RgAKecBtzKARuPaRTdYhZQ_hJhAY1vwyDiPklKuwccvtJefgLqd1Xbo7pGGYLsByUGnkf0h2HCZnRnZB7j63fPs_fHhbfmMV69PL8vFCqucNhHrqii0KVWtoSGgU3hOWwMlK4pWtZUxOWOs4CQvK6jqlvCKlppJUEQlQsp8nt1MvqN3HzsIUWzczqcQQbCG1owXNWsSxSZK-fS1ByNGb7fSHwQl4tiumNoVqV3x0644ivJJFBI8dOD_rP9RfQNyNX7P</recordid><startdate>20210801</startdate><enddate>20210801</enddate><creator>Mollah, Mohammad Sarwar Hossain</creator><creator>Abdullah-Al-Shafi, Md</creator><creator>Hossain, Md. Selim</creator><creator>Sen, Shuvo</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope></search><sort><creationdate>20210801</creationdate><title>An ultra-low material loss ellipse core-based photonic crystal fiber for terahertz wave guiding: design and analysis</title><author>Mollah, Mohammad Sarwar Hossain ; Abdullah-Al-Shafi, Md ; Hossain, Md. Selim ; Sen, Shuvo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-d644df5c8de90ed02571bfe5244bcb6ff3222470356e68b07615d2aec0c44baa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Cladding</topic><topic>Communication</topic><topic>Communication networks</topic><topic>Confinement</topic><topic>Crystal fibers</topic><topic>Design</topic><topic>Electric fields</topic><topic>Electrical Engineering</topic><topic>Engineering</topic><topic>Finite element analysis</topic><topic>Finite element method</topic><topic>Frequency ranges</topic><topic>Mathematical and Computational Engineering</topic><topic>Mathematical and Computational Physics</topic><topic>Mechanical Engineering</topic><topic>Optical and Electronic Materials</topic><topic>Optical properties</topic><topic>Perfectly matched layers</topic><topic>Photonic crystals</topic><topic>Porosity</topic><topic>Propagation modes</topic><topic>Radiation</topic><topic>Scattering</topic><topic>Software</topic><topic>Terahertz frequencies</topic><topic>Theoretical</topic><topic>Wave propagation</topic><topic>Wideband communications</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mollah, Mohammad Sarwar Hossain</creatorcontrib><creatorcontrib>Abdullah-Al-Shafi, Md</creatorcontrib><creatorcontrib>Hossain, Md. Selim</creatorcontrib><creatorcontrib>Sen, Shuvo</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><jtitle>Journal of computational electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mollah, Mohammad Sarwar Hossain</au><au>Abdullah-Al-Shafi, Md</au><au>Hossain, Md. Selim</au><au>Sen, Shuvo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An ultra-low material loss ellipse core-based photonic crystal fiber for terahertz wave guiding: design and analysis</atitle><jtitle>Journal of computational electronics</jtitle><stitle>J Comput Electron</stitle><date>2021-08-01</date><risdate>2021</risdate><volume>20</volume><issue>4</issue><spage>1541</spage><epage>1548</epage><pages>1541-1548</pages><issn>1569-8025</issn><eissn>1572-8137</eissn><abstract>In this research work, we report a new design model of quasi-shaped cladding areas with rotated-hexa-based elliptical shaped core areas in photonic crystal fiber (Q-PCF) for terahertz waves of communication signals. Here, we present a six-layer circular air hole in the quasi-shape of cladding regions with two layers of rotated-hexa-based elliptical shaped air holes in the core regions of the Q-PCF for analysis of communication networks in the terahertz regime. Additionally, perfectly matched layers and the finite element method based on the COMSOL software are used to design this Q-PCF. For short- and wideband communication sectors, our proposed Q-PCF is highly useful, as it reduces ultralow effective material loss (EML), confinement loss, and scattering loss in the terahertz regime. After analysis of the numerical results, our suggested Q-PCF shows an ultralow EML of 0.0159 cm −1 , power fraction in the core area of 74%, large effective area of 5.49 × 10 –8 m 2 , confinement loss of 3.22 × 10 –12  cm −1 , and scattering loss of 1.23 × 10 –10 at 1 THz frequency. Moreover, our proposed Q-PCF demonstrates single-mode propagation by the graphical results of the V-parameter over a frequency range of 0.80–3 THz. Our results suggest, we can clearly say that the reported Q-PCF may be highly appropriate for terahertz wave propagation for many communication networks.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10825-021-01720-9</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1569-8025
ispartof Journal of computational electronics, 2021-08, Vol.20 (4), p.1541-1548
issn 1569-8025
1572-8137
language eng
recordid cdi_proquest_journals_2918274829
source Springer Nature - Complete Springer Journals; ProQuest Central
subjects Cladding
Communication
Communication networks
Confinement
Crystal fibers
Design
Electric fields
Electrical Engineering
Engineering
Finite element analysis
Finite element method
Frequency ranges
Mathematical and Computational Engineering
Mathematical and Computational Physics
Mechanical Engineering
Optical and Electronic Materials
Optical properties
Perfectly matched layers
Photonic crystals
Porosity
Propagation modes
Radiation
Scattering
Software
Terahertz frequencies
Theoretical
Wave propagation
Wideband communications
title An ultra-low material loss ellipse core-based photonic crystal fiber for terahertz wave guiding: design and analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T08%3A44%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20ultra-low%20material%20loss%20ellipse%20core-based%20photonic%20crystal%20fiber%20for%20terahertz%20wave%20guiding:%20design%20and%20analysis&rft.jtitle=Journal%20of%20computational%20electronics&rft.au=Mollah,%20Mohammad%20Sarwar%20Hossain&rft.date=2021-08-01&rft.volume=20&rft.issue=4&rft.spage=1541&rft.epage=1548&rft.pages=1541-1548&rft.issn=1569-8025&rft.eissn=1572-8137&rft_id=info:doi/10.1007/s10825-021-01720-9&rft_dat=%3Cproquest_cross%3E2918274829%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918274829&rft_id=info:pmid/&rfr_iscdi=true