An ultra-low material loss ellipse core-based photonic crystal fiber for terahertz wave guiding: design and analysis
In this research work, we report a new design model of quasi-shaped cladding areas with rotated-hexa-based elliptical shaped core areas in photonic crystal fiber (Q-PCF) for terahertz waves of communication signals. Here, we present a six-layer circular air hole in the quasi-shape of cladding region...
Gespeichert in:
Veröffentlicht in: | Journal of computational electronics 2021-08, Vol.20 (4), p.1541-1548 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this research work, we report a new design model of quasi-shaped cladding areas with rotated-hexa-based elliptical shaped core areas in photonic crystal fiber (Q-PCF) for terahertz waves of communication signals. Here, we present a six-layer circular air hole in the quasi-shape of cladding regions with two layers of rotated-hexa-based elliptical shaped air holes in the core regions of the Q-PCF for analysis of communication networks in the terahertz regime. Additionally, perfectly matched layers and the finite element method based on the COMSOL software are used to design this Q-PCF. For short- and wideband communication sectors, our proposed Q-PCF is highly useful, as it reduces ultralow effective material loss (EML), confinement loss, and scattering loss in the terahertz regime. After analysis of the numerical results, our suggested Q-PCF shows an ultralow EML of 0.0159 cm
−1
, power fraction in the core area of 74%, large effective area of 5.49 × 10
–8
m
2
, confinement loss of 3.22 × 10
–12
cm
−1
, and scattering loss of 1.23 × 10
–10
at 1 THz frequency. Moreover, our proposed Q-PCF demonstrates single-mode propagation by the graphical results of the V-parameter over a frequency range of 0.80–3 THz. Our results suggest, we can clearly say that the reported Q-PCF may be highly appropriate for terahertz wave propagation for many communication networks. |
---|---|
ISSN: | 1569-8025 1572-8137 |
DOI: | 10.1007/s10825-021-01720-9 |