Enhancing quality of experience in mobile edge computing using deep learning based data offloading and cyberattack detection technique

Due to the advancements of high-speed networks, mobile edge computing (MEC) has received significant attention to bring processing and storage resources in client’s proximity. The MEC is also a form of Edge Network or In-network computing where the resources are brought closer to the user end (edge)...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cluster computing 2023-02, Vol.26 (1), p.59-70
Hauptverfasser: Hilal, Anwer Mustafa, Alohali, Manal Abdullah, Al-Wesabi, Fahd N., Nemri, Nadhem, Alyamani, Hasan J., Gupta, Deepak
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Due to the advancements of high-speed networks, mobile edge computing (MEC) has received significant attention to bring processing and storage resources in client’s proximity. The MEC is also a form of Edge Network or In-network computing where the resources are brought closer to the user end (edge) of the network while increasing QoE. On the other hand, the increase in the utilization of the internet of things (IoT) gadgets results in the generation of cybersecurity issues. In recent times, the advent of machine learning (ML) and deep learning (DL) techniques paves way in the detection of existing traffic conditions, data offloading, and cyberattacks in MEC. With this motivation, this study designs an effective deep learning based data offloading and cyberattack detection (DL-DOCAD) technique for MEC. The goal of the DL-DOCAD technique is to enhance the QoE in MEC systems. The proposed DL-DOCAD technique comprises traffic prediction, data offloading, and attack detection. The DL-DOCAD model applies a gated recurrent unit (GRU) based predictive model for traffic detection. In addition, an adaptive sampling cross entropy (ASCE) approach is employed for the maximization of throughput and decision making for offloading users. Moreover, the birds swarm algorithm based feed forward neural network (BSA-FFNN) model is used as a detector for cyberattacks in MEC. The utilization of BSA to appropriately tune the parameters of the FFNN helps to boost the classification performance to a maximum extent. A comprehensive set of simulations are performed and the resultant experimental values highlight the improved performance of the DL-DOCAD technique with the maximum detection accuracy of 0.992.
ISSN:1386-7857
1573-7543
DOI:10.1007/s10586-021-03401-5