Image processing based rice plant leaves diseases in Thanjavur, Tamilnadu

India is a highly populated agricultural country which has land area of 60.3% for agriculture purpose. The production of rice plant is decreased up to 20–30% because of various diseases. The most frequent diseases occurred in paddy leaves are leaf blast, leaf blight, false smut, brown spot and leaf...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cluster computing 2019-11, Vol.22 (Suppl 6), p.13415-13428
Hauptverfasser: Gayathri Devi, T., Neelamegam, P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:India is a highly populated agricultural country which has land area of 60.3% for agriculture purpose. The production of rice plant is decreased up to 20–30% because of various diseases. The most frequent diseases occurred in paddy leaves are leaf blast, leaf blight, false smut, brown spot and leaf streak. This paper mainly considers a method to detect the leaf diseases automatically using image processing techniques. To determine these diseases, the proposed methodology involves image Acquisition, image pre-processing, segmentation and classification of paddy leaf disease. In this proposed system, the features are extracted using hybrid method of discrete wavelet transform, scale invariant feature transform and gray scale co-occurrence matrix approach. Finally, the extracted features are given to various classifiers such as K nearest neighborhood neural network, back propagation neural network, Naïve Bayesian and multiclass SVM to categorize disease and non-disease plants. Many classification techniques are examined to classify the leaf disease. In experimental result, the proposed work is implemented in MATLAB software and performance of this work is measured in terms of accuracy. It is observed that multi class SVM provides the better accuracy of 98.63% when compared to other classifiers.
ISSN:1386-7857
1573-7543
DOI:10.1007/s10586-018-1949-x