Multi-level semantic annotation and unified data integration using semantic web ontology in big data processing

The potential applications of big data need semantic annotation and unified integration of heterogeneous data. This paper proposes MOUNT a multi-level annotation and integration framework that significantly process the heterogeneous dataset by exploiting the semantic knowledge to improve the query p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cluster computing 2019-09, Vol.22 (Suppl 5), p.10401-10413
Hauptverfasser: Rani, P. Shobha, Suresh, R. M., Sethukarasi, R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The potential applications of big data need semantic annotation and unified integration of heterogeneous data. This paper proposes MOUNT a multi-level annotation and integration framework that significantly process the heterogeneous dataset by exploiting the semantic knowledge to improve the query processing in the large scale infrastructure. The multi-level annotation proposes the coarse-grained and fine-grained annotation models. The coarse-grained annotation employs Yago and SEeds SEarch to categorize the domain information on the big data and fine-grained annotation enables semantic enrichment. Moreover, the MOUNT approach integrates the structured and unstructured data to form the global resource description framework ontology. Moreover, it facilitates the query processing by translating the natural language user query into structured triples. The experimental results prove that the MOUNT approach yields a better performance in terms of result accuracy by 94%.
ISSN:1386-7857
1573-7543
DOI:10.1007/s10586-017-1029-7