Multiple-source adaptation theory and algorithms – addendum
In this note, we present some key results complementing a previous manuscript (Hoffman et al., Ann. Math. Artif. Intell. 89 (3-4), 237–270, 2021 ) dealing with the problem of multiple-source adaptation, a key learning problem in applications. In particular, we extend the theoretical results presente...
Gespeichert in:
Veröffentlicht in: | Annals of mathematics and artificial intelligence 2022-06, Vol.90 (6), p.569-572 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 572 |
---|---|
container_issue | 6 |
container_start_page | 569 |
container_title | Annals of mathematics and artificial intelligence |
container_volume | 90 |
creator | Hoffman, Judy Mohri, Mehryar Zhang, Ningshan |
description | In this note, we present some key results complementing a previous manuscript (Hoffman et al., Ann. Math. Artif. Intell.
89
(3-4), 237–270,
2021
) dealing with the problem of multiple-source adaptation, a key learning problem in applications. In particular, we extend the theoretical results presented for the
probability model
to the case where estimated distributions are used, first by giving a guarantee that depends on the Rényi divergence of the target distribution and the family of mixtures of estimated distributions, next by generalizing that to a result that only depends on the Rényi divergence with respect to the family of mixtures of the exact source distributions. |
doi_str_mv | 10.1007/s10472-022-09791-5 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918205019</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918205019</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-c25e6d8df4eee49a7e5020b83b2349210efbe104c8c2769b8910e681521e7e4b3</originalsourceid><addsrcrecordid>eNp9kDtOxDAQhi0EEsvCBagiURvGjh3bBQVa8ZIW0UBtOclkN6u8sJNiO-7ADTkJhiDRUYxmNPr_eXyEnDO4ZADqKjAQilPgMYwyjMoDsmBSpVQJBYexBsYpFyI9Jich7ADAZDpbkOunqRnroUEa-skXmLjSDaMb675Lxi32fp-4rkxcs-l9PW7bkHy-f0RRiV05tafkqHJNwLPfvCSvd7cvqwe6fr5_XN2saZEyM9KCS8xKXVYCEYVxCiVwyHWa81QYzgCrHOMHhS64ykyuTWxlmknOUKHI0yW5mOcOvn-bMIx2F6_t4krLDdMcJDATVXxWFb4PwWNlB1-3zu8tA_uNyc6YbMRkfzBZGU3pbApR3G3Q_43-x_UFgrtq4Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918205019</pqid></control><display><type>article</type><title>Multiple-source adaptation theory and algorithms – addendum</title><source>ProQuest Central UK/Ireland</source><source>SpringerLink Journals - AutoHoldings</source><source>ProQuest Central</source><creator>Hoffman, Judy ; Mohri, Mehryar ; Zhang, Ningshan</creator><creatorcontrib>Hoffman, Judy ; Mohri, Mehryar ; Zhang, Ningshan</creatorcontrib><description>In this note, we present some key results complementing a previous manuscript (Hoffman et al., Ann. Math. Artif. Intell.
89
(3-4), 237–270,
2021
) dealing with the problem of multiple-source adaptation, a key learning problem in applications. In particular, we extend the theoretical results presented for the
probability model
to the case where estimated distributions are used, first by giving a guarantee that depends on the Rényi divergence of the target distribution and the family of mixtures of estimated distributions, next by generalizing that to a result that only depends on the Rényi divergence with respect to the family of mixtures of the exact source distributions.</description><identifier>ISSN: 1012-2443</identifier><identifier>EISSN: 1573-7470</identifier><identifier>DOI: 10.1007/s10472-022-09791-5</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Adaptation ; Algorithms ; Artificial Intelligence ; Complex Systems ; Computer Science ; Estimates ; Mathematics ; Mixtures ; Probability</subject><ispartof>Annals of mathematics and artificial intelligence, 2022-06, Vol.90 (6), p.569-572</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Switzerland AG 2022</rights><rights>The Author(s), under exclusive licence to Springer Nature Switzerland AG 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-c25e6d8df4eee49a7e5020b83b2349210efbe104c8c2769b8910e681521e7e4b3</citedby><cites>FETCH-LOGICAL-c319t-c25e6d8df4eee49a7e5020b83b2349210efbe104c8c2769b8910e681521e7e4b3</cites><orcidid>0000-0002-3987-9847</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10472-022-09791-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2918205019?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,21388,27924,27925,33744,41488,42557,43805,51319,64385,64389,72469</link.rule.ids></links><search><creatorcontrib>Hoffman, Judy</creatorcontrib><creatorcontrib>Mohri, Mehryar</creatorcontrib><creatorcontrib>Zhang, Ningshan</creatorcontrib><title>Multiple-source adaptation theory and algorithms – addendum</title><title>Annals of mathematics and artificial intelligence</title><addtitle>Ann Math Artif Intell</addtitle><description>In this note, we present some key results complementing a previous manuscript (Hoffman et al., Ann. Math. Artif. Intell.
89
(3-4), 237–270,
2021
) dealing with the problem of multiple-source adaptation, a key learning problem in applications. In particular, we extend the theoretical results presented for the
probability model
to the case where estimated distributions are used, first by giving a guarantee that depends on the Rényi divergence of the target distribution and the family of mixtures of estimated distributions, next by generalizing that to a result that only depends on the Rényi divergence with respect to the family of mixtures of the exact source distributions.</description><subject>Adaptation</subject><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Complex Systems</subject><subject>Computer Science</subject><subject>Estimates</subject><subject>Mathematics</subject><subject>Mixtures</subject><subject>Probability</subject><issn>1012-2443</issn><issn>1573-7470</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kDtOxDAQhi0EEsvCBagiURvGjh3bBQVa8ZIW0UBtOclkN6u8sJNiO-7ADTkJhiDRUYxmNPr_eXyEnDO4ZADqKjAQilPgMYwyjMoDsmBSpVQJBYexBsYpFyI9Jich7ADAZDpbkOunqRnroUEa-skXmLjSDaMb675Lxi32fp-4rkxcs-l9PW7bkHy-f0RRiV05tafkqHJNwLPfvCSvd7cvqwe6fr5_XN2saZEyM9KCS8xKXVYCEYVxCiVwyHWa81QYzgCrHOMHhS64ykyuTWxlmknOUKHI0yW5mOcOvn-bMIx2F6_t4krLDdMcJDATVXxWFb4PwWNlB1-3zu8tA_uNyc6YbMRkfzBZGU3pbApR3G3Q_43-x_UFgrtq4Q</recordid><startdate>20220601</startdate><enddate>20220601</enddate><creator>Hoffman, Judy</creator><creator>Mohri, Mehryar</creator><creator>Zhang, Ningshan</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0002-3987-9847</orcidid></search><sort><creationdate>20220601</creationdate><title>Multiple-source adaptation theory and algorithms – addendum</title><author>Hoffman, Judy ; Mohri, Mehryar ; Zhang, Ningshan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-c25e6d8df4eee49a7e5020b83b2349210efbe104c8c2769b8910e681521e7e4b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Adaptation</topic><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Complex Systems</topic><topic>Computer Science</topic><topic>Estimates</topic><topic>Mathematics</topic><topic>Mixtures</topic><topic>Probability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hoffman, Judy</creatorcontrib><creatorcontrib>Mohri, Mehryar</creatorcontrib><creatorcontrib>Zhang, Ningshan</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><jtitle>Annals of mathematics and artificial intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hoffman, Judy</au><au>Mohri, Mehryar</au><au>Zhang, Ningshan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiple-source adaptation theory and algorithms – addendum</atitle><jtitle>Annals of mathematics and artificial intelligence</jtitle><stitle>Ann Math Artif Intell</stitle><date>2022-06-01</date><risdate>2022</risdate><volume>90</volume><issue>6</issue><spage>569</spage><epage>572</epage><pages>569-572</pages><issn>1012-2443</issn><eissn>1573-7470</eissn><abstract>In this note, we present some key results complementing a previous manuscript (Hoffman et al., Ann. Math. Artif. Intell.
89
(3-4), 237–270,
2021
) dealing with the problem of multiple-source adaptation, a key learning problem in applications. In particular, we extend the theoretical results presented for the
probability model
to the case where estimated distributions are used, first by giving a guarantee that depends on the Rényi divergence of the target distribution and the family of mixtures of estimated distributions, next by generalizing that to a result that only depends on the Rényi divergence with respect to the family of mixtures of the exact source distributions.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s10472-022-09791-5</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0002-3987-9847</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1012-2443 |
ispartof | Annals of mathematics and artificial intelligence, 2022-06, Vol.90 (6), p.569-572 |
issn | 1012-2443 1573-7470 |
language | eng |
recordid | cdi_proquest_journals_2918205019 |
source | ProQuest Central UK/Ireland; SpringerLink Journals - AutoHoldings; ProQuest Central |
subjects | Adaptation Algorithms Artificial Intelligence Complex Systems Computer Science Estimates Mathematics Mixtures Probability |
title | Multiple-source adaptation theory and algorithms – addendum |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T09%3A46%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiple-source%20adaptation%20theory%20and%20algorithms%20%E2%80%93%20addendum&rft.jtitle=Annals%20of%20mathematics%20and%20artificial%20intelligence&rft.au=Hoffman,%20Judy&rft.date=2022-06-01&rft.volume=90&rft.issue=6&rft.spage=569&rft.epage=572&rft.pages=569-572&rft.issn=1012-2443&rft.eissn=1573-7470&rft_id=info:doi/10.1007/s10472-022-09791-5&rft_dat=%3Cproquest_cross%3E2918205019%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918205019&rft_id=info:pmid/&rfr_iscdi=true |