Multiple-source adaptation theory and algorithms – addendum

In this note, we present some key results complementing a previous manuscript (Hoffman et al., Ann. Math. Artif. Intell. 89 (3-4), 237–270, 2021 ) dealing with the problem of multiple-source adaptation, a key learning problem in applications. In particular, we extend the theoretical results presente...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annals of mathematics and artificial intelligence 2022-06, Vol.90 (6), p.569-572
Hauptverfasser: Hoffman, Judy, Mohri, Mehryar, Zhang, Ningshan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this note, we present some key results complementing a previous manuscript (Hoffman et al., Ann. Math. Artif. Intell. 89 (3-4), 237–270, 2021 ) dealing with the problem of multiple-source adaptation, a key learning problem in applications. In particular, we extend the theoretical results presented for the probability model to the case where estimated distributions are used, first by giving a guarantee that depends on the Rényi divergence of the target distribution and the family of mixtures of estimated distributions, next by generalizing that to a result that only depends on the Rényi divergence with respect to the family of mixtures of the exact source distributions.
ISSN:1012-2443
1573-7470
DOI:10.1007/s10472-022-09791-5