Multiple-source adaptation theory and algorithms – addendum
In this note, we present some key results complementing a previous manuscript (Hoffman et al., Ann. Math. Artif. Intell. 89 (3-4), 237–270, 2021 ) dealing with the problem of multiple-source adaptation, a key learning problem in applications. In particular, we extend the theoretical results presente...
Gespeichert in:
Veröffentlicht in: | Annals of mathematics and artificial intelligence 2022-06, Vol.90 (6), p.569-572 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this note, we present some key results complementing a previous manuscript (Hoffman et al., Ann. Math. Artif. Intell.
89
(3-4), 237–270,
2021
) dealing with the problem of multiple-source adaptation, a key learning problem in applications. In particular, we extend the theoretical results presented for the
probability model
to the case where estimated distributions are used, first by giving a guarantee that depends on the Rényi divergence of the target distribution and the family of mixtures of estimated distributions, next by generalizing that to a result that only depends on the Rényi divergence with respect to the family of mixtures of the exact source distributions. |
---|---|
ISSN: | 1012-2443 1573-7470 |
DOI: | 10.1007/s10472-022-09791-5 |