Multiple kernel ensemble learning for software defect prediction

Software defect prediction aims to predict the defect proneness of new software modules with the historical defect data so as to improve the quality of a software system. Software historical defect data has a complicated structure and a marked characteristic of class-imbalance; how to fully analyze...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Automated software engineering 2016-12, Vol.23 (4), p.569-590
Hauptverfasser: Wang, Tiejian, Zhang, Zhiwu, Jing, Xiaoyuan, Zhang, Liqiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Software defect prediction aims to predict the defect proneness of new software modules with the historical defect data so as to improve the quality of a software system. Software historical defect data has a complicated structure and a marked characteristic of class-imbalance; how to fully analyze and utilize the existing historical defect data and build more precise and effective classifiers has attracted considerable researchers’ interest from both academia and industry. Multiple kernel learning and ensemble learning are effective techniques in the field of machine learning. Multiple kernel learning can map the historical defect data to a higher-dimensional feature space and make them express better, and ensemble learning can use a series of weak classifiers to reduce the bias generated by the majority class and obtain better predictive performance. In this paper, we propose to use the multiple kernel learning to predict software defect. By using the characteristics of the metrics mined from the open source software, we get a multiple kernel classifier through ensemble learning method, which has the advantages of both multiple kernel learning and ensemble learning. We thus propose a multiple kernel ensemble learning (MKEL) approach for software defect classification and prediction. Considering the cost of risk in software defect prediction, we design a new sample weight vector updating strategy to reduce the cost of risk caused by misclassifying defective modules as non-defective ones. We employ the widely used NASA MDP datasets as test data to evaluate the performance of all compared methods; experimental results show that MKEL outperforms several representative state-of-the-art defect prediction methods.
ISSN:0928-8910
1573-7535
DOI:10.1007/s10515-015-0179-1