Separoids: A Mathematical Framework for Conditional Independence and Irrelevance

We introduce an axiomatic definition of a mathematical structure that we term a separoid. We develop some general mathematical properties of separoids and related axiom systems, as well as connections with other mathematical structures, such as distributive lattices, Hilbert spaces, and graphs. And...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annals of mathematics and artificial intelligence 2001-01, Vol.32 (1-4), p.335-372
1. Verfasser: Dawid, A.P
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We introduce an axiomatic definition of a mathematical structure that we term a separoid. We develop some general mathematical properties of separoids and related axiom systems, as well as connections with other mathematical structures, such as distributive lattices, Hilbert spaces, and graphs. And we show, by means of a detailed account of a number of models of the separoid axioms, how the concept of separoid unifies a variety of notions of ‘irrelevance’ arising out of different formalisms for representing uncertainty in Probability, Statistics, Artificial Intelligence, and other fields.
ISSN:1012-2443
1573-7470
DOI:10.1023/A:1016734104787