Robust domain adaptation

We derive a generalization bound for domain adaptation by using the properties of robust algorithms. Our new bound depends on λ -shift, a measure of prior knowledge regarding the similarity of source and target domain distributions. Based on the generalization bound, we design SVM variants for binar...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annals of mathematics and artificial intelligence 2014-08, Vol.71 (4), p.365-380
Hauptverfasser: Mansour, Yishay, Schain, Mariano
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 380
container_issue 4
container_start_page 365
container_title Annals of mathematics and artificial intelligence
container_volume 71
creator Mansour, Yishay
Schain, Mariano
description We derive a generalization bound for domain adaptation by using the properties of robust algorithms. Our new bound depends on λ -shift, a measure of prior knowledge regarding the similarity of source and target domain distributions. Based on the generalization bound, we design SVM variants for binary classification and regression domain adaptation algorithms.
doi_str_mv 10.1007/s10472-013-9391-5
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918194108</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918194108</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-2c2f6c0ae427aa1aa888ec289a756dc05f6ecabae9c03a1cb4293278bfcf55003</originalsourceid><addsrcrecordid>eNp1kEtLxDAUhYMoOI7udTfgOnpvHk2ylMEXDAii63CbptLBaWrSWfjv7VDBlat7Fuc7Fz7GrhBuEMDcFgRlBAeU3EmHXB-xBWojuVEGjqcMKLhQSp6ys1K2AOAqWy3Y5Wuq92VcNWlHXb-ihoaRxi715-ykpc8SL37vkr0_3L-tn_jm5fF5fbfhQWI1chFEWwWgqIQhQiJrbQzCOjK6agLotoqBaoougCQMtRJOCmPrNrRaA8glu553h5y-9rGMfpv2uZ9eeuHQolMIdmrh3Ao5lZJj64fc7Sh_ewR_EOBnAX4S4A8CvJ4YMTNl6vYfMf8t_w_9AHKaXFg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918194108</pqid></control><display><type>article</type><title>Robust domain adaptation</title><source>SpringerNature Journals</source><source>ProQuest Central UK/Ireland</source><source>ProQuest Central</source><creator>Mansour, Yishay ; Schain, Mariano</creator><creatorcontrib>Mansour, Yishay ; Schain, Mariano</creatorcontrib><description>We derive a generalization bound for domain adaptation by using the properties of robust algorithms. Our new bound depends on λ -shift, a measure of prior knowledge regarding the similarity of source and target domain distributions. Based on the generalization bound, we design SVM variants for binary classification and regression domain adaptation algorithms.</description><identifier>ISSN: 1012-2443</identifier><identifier>EISSN: 1573-7470</identifier><identifier>DOI: 10.1007/s10472-013-9391-5</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Adaptation ; Algorithms ; Artificial Intelligence ; Complex Systems ; Computer Science ; Mathematics ; Robustness</subject><ispartof>Annals of mathematics and artificial intelligence, 2014-08, Vol.71 (4), p.365-380</ispartof><rights>Springer Science+Business Media Dordrecht 2013</rights><rights>Springer Science+Business Media Dordrecht 2013.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-2c2f6c0ae427aa1aa888ec289a756dc05f6ecabae9c03a1cb4293278bfcf55003</citedby><cites>FETCH-LOGICAL-c316t-2c2f6c0ae427aa1aa888ec289a756dc05f6ecabae9c03a1cb4293278bfcf55003</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10472-013-9391-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2918194108?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,21388,27924,27925,33744,41488,42557,43805,51319,64385,64389,72469</link.rule.ids></links><search><creatorcontrib>Mansour, Yishay</creatorcontrib><creatorcontrib>Schain, Mariano</creatorcontrib><title>Robust domain adaptation</title><title>Annals of mathematics and artificial intelligence</title><addtitle>Ann Math Artif Intell</addtitle><description>We derive a generalization bound for domain adaptation by using the properties of robust algorithms. Our new bound depends on λ -shift, a measure of prior knowledge regarding the similarity of source and target domain distributions. Based on the generalization bound, we design SVM variants for binary classification and regression domain adaptation algorithms.</description><subject>Adaptation</subject><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Complex Systems</subject><subject>Computer Science</subject><subject>Mathematics</subject><subject>Robustness</subject><issn>1012-2443</issn><issn>1573-7470</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kEtLxDAUhYMoOI7udTfgOnpvHk2ylMEXDAii63CbptLBaWrSWfjv7VDBlat7Fuc7Fz7GrhBuEMDcFgRlBAeU3EmHXB-xBWojuVEGjqcMKLhQSp6ys1K2AOAqWy3Y5Wuq92VcNWlHXb-ihoaRxi715-ykpc8SL37vkr0_3L-tn_jm5fF5fbfhQWI1chFEWwWgqIQhQiJrbQzCOjK6agLotoqBaoougCQMtRJOCmPrNrRaA8glu553h5y-9rGMfpv2uZ9eeuHQolMIdmrh3Ao5lZJj64fc7Sh_ewR_EOBnAX4S4A8CvJ4YMTNl6vYfMf8t_w_9AHKaXFg</recordid><startdate>20140801</startdate><enddate>20140801</enddate><creator>Mansour, Yishay</creator><creator>Schain, Mariano</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope></search><sort><creationdate>20140801</creationdate><title>Robust domain adaptation</title><author>Mansour, Yishay ; Schain, Mariano</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-2c2f6c0ae427aa1aa888ec289a756dc05f6ecabae9c03a1cb4293278bfcf55003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Adaptation</topic><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Complex Systems</topic><topic>Computer Science</topic><topic>Mathematics</topic><topic>Robustness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mansour, Yishay</creatorcontrib><creatorcontrib>Schain, Mariano</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><jtitle>Annals of mathematics and artificial intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mansour, Yishay</au><au>Schain, Mariano</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robust domain adaptation</atitle><jtitle>Annals of mathematics and artificial intelligence</jtitle><stitle>Ann Math Artif Intell</stitle><date>2014-08-01</date><risdate>2014</risdate><volume>71</volume><issue>4</issue><spage>365</spage><epage>380</epage><pages>365-380</pages><issn>1012-2443</issn><eissn>1573-7470</eissn><abstract>We derive a generalization bound for domain adaptation by using the properties of robust algorithms. Our new bound depends on λ -shift, a measure of prior knowledge regarding the similarity of source and target domain distributions. Based on the generalization bound, we design SVM variants for binary classification and regression domain adaptation algorithms.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s10472-013-9391-5</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1012-2443
ispartof Annals of mathematics and artificial intelligence, 2014-08, Vol.71 (4), p.365-380
issn 1012-2443
1573-7470
language eng
recordid cdi_proquest_journals_2918194108
source SpringerNature Journals; ProQuest Central UK/Ireland; ProQuest Central
subjects Adaptation
Algorithms
Artificial Intelligence
Complex Systems
Computer Science
Mathematics
Robustness
title Robust domain adaptation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T22%3A03%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robust%20domain%20adaptation&rft.jtitle=Annals%20of%20mathematics%20and%20artificial%20intelligence&rft.au=Mansour,%20Yishay&rft.date=2014-08-01&rft.volume=71&rft.issue=4&rft.spage=365&rft.epage=380&rft.pages=365-380&rft.issn=1012-2443&rft.eissn=1573-7470&rft_id=info:doi/10.1007/s10472-013-9391-5&rft_dat=%3Cproquest_cross%3E2918194108%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918194108&rft_id=info:pmid/&rfr_iscdi=true