Robust domain adaptation
We derive a generalization bound for domain adaptation by using the properties of robust algorithms. Our new bound depends on λ -shift, a measure of prior knowledge regarding the similarity of source and target domain distributions. Based on the generalization bound, we design SVM variants for binar...
Gespeichert in:
Veröffentlicht in: | Annals of mathematics and artificial intelligence 2014-08, Vol.71 (4), p.365-380 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 380 |
---|---|
container_issue | 4 |
container_start_page | 365 |
container_title | Annals of mathematics and artificial intelligence |
container_volume | 71 |
creator | Mansour, Yishay Schain, Mariano |
description | We derive a generalization bound for domain adaptation by using the properties of robust algorithms. Our new bound depends on
λ
-shift, a measure of prior knowledge regarding the similarity of source and target domain distributions. Based on the generalization bound, we design SVM variants for binary classification and regression domain adaptation algorithms. |
doi_str_mv | 10.1007/s10472-013-9391-5 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918194108</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918194108</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-2c2f6c0ae427aa1aa888ec289a756dc05f6ecabae9c03a1cb4293278bfcf55003</originalsourceid><addsrcrecordid>eNp1kEtLxDAUhYMoOI7udTfgOnpvHk2ylMEXDAii63CbptLBaWrSWfjv7VDBlat7Fuc7Fz7GrhBuEMDcFgRlBAeU3EmHXB-xBWojuVEGjqcMKLhQSp6ys1K2AOAqWy3Y5Wuq92VcNWlHXb-ihoaRxi715-ykpc8SL37vkr0_3L-tn_jm5fF5fbfhQWI1chFEWwWgqIQhQiJrbQzCOjK6agLotoqBaoougCQMtRJOCmPrNrRaA8glu553h5y-9rGMfpv2uZ9eeuHQolMIdmrh3Ao5lZJj64fc7Sh_ewR_EOBnAX4S4A8CvJ4YMTNl6vYfMf8t_w_9AHKaXFg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918194108</pqid></control><display><type>article</type><title>Robust domain adaptation</title><source>SpringerNature Journals</source><source>ProQuest Central UK/Ireland</source><source>ProQuest Central</source><creator>Mansour, Yishay ; Schain, Mariano</creator><creatorcontrib>Mansour, Yishay ; Schain, Mariano</creatorcontrib><description>We derive a generalization bound for domain adaptation by using the properties of robust algorithms. Our new bound depends on
λ
-shift, a measure of prior knowledge regarding the similarity of source and target domain distributions. Based on the generalization bound, we design SVM variants for binary classification and regression domain adaptation algorithms.</description><identifier>ISSN: 1012-2443</identifier><identifier>EISSN: 1573-7470</identifier><identifier>DOI: 10.1007/s10472-013-9391-5</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Adaptation ; Algorithms ; Artificial Intelligence ; Complex Systems ; Computer Science ; Mathematics ; Robustness</subject><ispartof>Annals of mathematics and artificial intelligence, 2014-08, Vol.71 (4), p.365-380</ispartof><rights>Springer Science+Business Media Dordrecht 2013</rights><rights>Springer Science+Business Media Dordrecht 2013.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-2c2f6c0ae427aa1aa888ec289a756dc05f6ecabae9c03a1cb4293278bfcf55003</citedby><cites>FETCH-LOGICAL-c316t-2c2f6c0ae427aa1aa888ec289a756dc05f6ecabae9c03a1cb4293278bfcf55003</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10472-013-9391-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2918194108?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,21388,27924,27925,33744,41488,42557,43805,51319,64385,64389,72469</link.rule.ids></links><search><creatorcontrib>Mansour, Yishay</creatorcontrib><creatorcontrib>Schain, Mariano</creatorcontrib><title>Robust domain adaptation</title><title>Annals of mathematics and artificial intelligence</title><addtitle>Ann Math Artif Intell</addtitle><description>We derive a generalization bound for domain adaptation by using the properties of robust algorithms. Our new bound depends on
λ
-shift, a measure of prior knowledge regarding the similarity of source and target domain distributions. Based on the generalization bound, we design SVM variants for binary classification and regression domain adaptation algorithms.</description><subject>Adaptation</subject><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Complex Systems</subject><subject>Computer Science</subject><subject>Mathematics</subject><subject>Robustness</subject><issn>1012-2443</issn><issn>1573-7470</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kEtLxDAUhYMoOI7udTfgOnpvHk2ylMEXDAii63CbptLBaWrSWfjv7VDBlat7Fuc7Fz7GrhBuEMDcFgRlBAeU3EmHXB-xBWojuVEGjqcMKLhQSp6ys1K2AOAqWy3Y5Wuq92VcNWlHXb-ihoaRxi715-ykpc8SL37vkr0_3L-tn_jm5fF5fbfhQWI1chFEWwWgqIQhQiJrbQzCOjK6agLotoqBaoougCQMtRJOCmPrNrRaA8glu553h5y-9rGMfpv2uZ9eeuHQolMIdmrh3Ao5lZJj64fc7Sh_ewR_EOBnAX4S4A8CvJ4YMTNl6vYfMf8t_w_9AHKaXFg</recordid><startdate>20140801</startdate><enddate>20140801</enddate><creator>Mansour, Yishay</creator><creator>Schain, Mariano</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope></search><sort><creationdate>20140801</creationdate><title>Robust domain adaptation</title><author>Mansour, Yishay ; Schain, Mariano</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-2c2f6c0ae427aa1aa888ec289a756dc05f6ecabae9c03a1cb4293278bfcf55003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Adaptation</topic><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Complex Systems</topic><topic>Computer Science</topic><topic>Mathematics</topic><topic>Robustness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mansour, Yishay</creatorcontrib><creatorcontrib>Schain, Mariano</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><jtitle>Annals of mathematics and artificial intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mansour, Yishay</au><au>Schain, Mariano</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robust domain adaptation</atitle><jtitle>Annals of mathematics and artificial intelligence</jtitle><stitle>Ann Math Artif Intell</stitle><date>2014-08-01</date><risdate>2014</risdate><volume>71</volume><issue>4</issue><spage>365</spage><epage>380</epage><pages>365-380</pages><issn>1012-2443</issn><eissn>1573-7470</eissn><abstract>We derive a generalization bound for domain adaptation by using the properties of robust algorithms. Our new bound depends on
λ
-shift, a measure of prior knowledge regarding the similarity of source and target domain distributions. Based on the generalization bound, we design SVM variants for binary classification and regression domain adaptation algorithms.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s10472-013-9391-5</doi><tpages>16</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1012-2443 |
ispartof | Annals of mathematics and artificial intelligence, 2014-08, Vol.71 (4), p.365-380 |
issn | 1012-2443 1573-7470 |
language | eng |
recordid | cdi_proquest_journals_2918194108 |
source | SpringerNature Journals; ProQuest Central UK/Ireland; ProQuest Central |
subjects | Adaptation Algorithms Artificial Intelligence Complex Systems Computer Science Mathematics Robustness |
title | Robust domain adaptation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T22%3A03%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robust%20domain%20adaptation&rft.jtitle=Annals%20of%20mathematics%20and%20artificial%20intelligence&rft.au=Mansour,%20Yishay&rft.date=2014-08-01&rft.volume=71&rft.issue=4&rft.spage=365&rft.epage=380&rft.pages=365-380&rft.issn=1012-2443&rft.eissn=1573-7470&rft_id=info:doi/10.1007/s10472-013-9391-5&rft_dat=%3Cproquest_cross%3E2918194108%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918194108&rft_id=info:pmid/&rfr_iscdi=true |