Robust domain adaptation

We derive a generalization bound for domain adaptation by using the properties of robust algorithms. Our new bound depends on λ -shift, a measure of prior knowledge regarding the similarity of source and target domain distributions. Based on the generalization bound, we design SVM variants for binar...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annals of mathematics and artificial intelligence 2014-08, Vol.71 (4), p.365-380
Hauptverfasser: Mansour, Yishay, Schain, Mariano
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We derive a generalization bound for domain adaptation by using the properties of robust algorithms. Our new bound depends on λ -shift, a measure of prior knowledge regarding the similarity of source and target domain distributions. Based on the generalization bound, we design SVM variants for binary classification and regression domain adaptation algorithms.
ISSN:1012-2443
1573-7470
DOI:10.1007/s10472-013-9391-5