Robust domain adaptation
We derive a generalization bound for domain adaptation by using the properties of robust algorithms. Our new bound depends on λ -shift, a measure of prior knowledge regarding the similarity of source and target domain distributions. Based on the generalization bound, we design SVM variants for binar...
Gespeichert in:
Veröffentlicht in: | Annals of mathematics and artificial intelligence 2014-08, Vol.71 (4), p.365-380 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We derive a generalization bound for domain adaptation by using the properties of robust algorithms. Our new bound depends on
λ
-shift, a measure of prior knowledge regarding the similarity of source and target domain distributions. Based on the generalization bound, we design SVM variants for binary classification and regression domain adaptation algorithms. |
---|---|
ISSN: | 1012-2443 1573-7470 |
DOI: | 10.1007/s10472-013-9391-5 |