On look-ahead heuristics in disjunctive logic programming

Disjunctive logic programming (DLP), also called answer set programming (ASP), is a convenient programming paradigm which allows for solving problems in a simple and highly declarative way. The language of DLP is very expressive and able to represent even problems of high complexity (every problem i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annals of mathematics and artificial intelligence 2007-12, Vol.51 (2-4), p.229-266
Hauptverfasser: Faber, Wolfgang, Leone, Nicola, Pfeifer, Gerald, Ricca, Francesco
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Disjunctive logic programming (DLP), also called answer set programming (ASP), is a convenient programming paradigm which allows for solving problems in a simple and highly declarative way. The language of DLP is very expressive and able to represent even problems of high complexity (every problem in the complexity class ). During the last decade, efficient systems supporting DLP have become available. Virtually all of these systems internally rely on variants of the Davis–Putnam procedure (for deciding propositional satisfiability [SAT]), combined with a suitable model checker. The heuristic for the selection of the branching literal (i.e., the criterion determining the literal to be assumed true at a given stage of the computation) dramatically affects the performance of a DLP system. While heuristics for SAT have received a fair deal of research, only little work on heuristics for DLP has been done so far. In this paper, we design, implement, optimize, and experiment with a number of heuristics for DLP. We focus on different look-ahead heuristics, also called “dynamic heuristics” (the DLP equivalent of unit propagation [UP] heuristics for SAT). These are branching rules where the heuristic value of a literal Q depends on the result of taking Q true and computing its consequences. We motivate and formally define a number of look-ahead heuristics for DLP programs. Furthermore, since look-ahead heuristics are computationally expensive, we design two techniques for optimizing the burden of their computation. We implement all the proposed heuristics and optimization techniques in DLV—the state-of-the-art implementation of disjunctive logic programming, and we carry out experiments, thoroughly comparing the heuristics and optimization techniques on a large number of instances of well-known benchmark problems. The results of these experiments are very interesting, showing that the proposed techniques significantly improve the performance of the DLV system.
ISSN:1012-2443
1573-7470
DOI:10.1007/s10472-008-9087-4