Environmental Stability of Schwertmannite: A Review
Schwertmannite is sensitive to changes in geochemical, thermal, and microbial conditions. Changes in aqueous pH beyond its stability, i.e. pH 2.5–4.5, triggers its transformation to jarosite or goethite in highly acidic environments (pH ≤ 2.5), depending on the availability of jarosite-directing cat...
Gespeichert in:
Veröffentlicht in: | Mine water and the environment 2021-09, Vol.40 (3), p.570-586 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Schwertmannite is sensitive to changes in geochemical, thermal, and microbial conditions. Changes in aqueous pH beyond its stability, i.e. pH 2.5–4.5, triggers its transformation to jarosite or goethite in highly acidic environments (pH ≤ 2.5), depending on the availability of jarosite-directing cations (Na
+
, NH
4
+
, K
+
, etc.), while goethite is the common stable end product at pH > 7.5. Schwertmannite with degraded morphology can stably exist for years in oxic intermediate pH environments (pH 5.5–6.5), but the presence of trace amounts of Fe(II)
aq
yields goethite/lepidocrocite within a few hours, especially at pH ≥ 6.5. Hematite is the sole end product at ≥ 600 °C dry heating, with goethite and ferrihydrite as intermediate phases. Siderite, maghemite, and mackinawite form in anoxic microbial conditions due to dissimilatory reduction of Fe(III) and SO
4
2−
to Fe(II) and HS
−
, while orpiment forms from As(V)-rich schwertmannites. Sorbed contaminants enhance schwertmannite stability by restricting Fe(II)–Fe(III) electron transfer and microbial degradation by occupying surface sites. Although Fe(III) and sorbed ion mobilization typically has negligible effects on schwertmannite transformation, complete schwertmannite-SO
4
release is likely in extreme conditions, and in microbial Fe(II)
aq
-rich media. Dissolution–reprecipitation and solid state transformation mechanisms broadly govern schwertmannite transformation. |
---|---|
ISSN: | 1025-9112 1616-1068 |
DOI: | 10.1007/s10230-020-00734-2 |