The upper tail problem for induced 4‐cycles in sparse random graphs

Building on the techniques from the breakthrough paper of Harel, Mousset and Samotij, which solved the upper tail problem for cliques, we compute the asymptotics of the upper tail for the number of induced copies of the 4‐cycle in the binomial random graph Gn,p$$ {G}_{n,p} $$. We observe a new pheno...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Random structures & algorithms 2024-03, Vol.64 (2), p.401-459
1. Verfasser: Cohen Antonir, Asaf
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Building on the techniques from the breakthrough paper of Harel, Mousset and Samotij, which solved the upper tail problem for cliques, we compute the asymptotics of the upper tail for the number of induced copies of the 4‐cycle in the binomial random graph Gn,p$$ {G}_{n,p} $$. We observe a new phenomenon in the theory of large deviations of subgraph counts. This phenomenon is that, in a certain (large) range of p$$ p $$, the upper tail of the induced 4‐cycle does not admit a naive mean‐field approximation.
ISSN:1042-9832
1098-2418
DOI:10.1002/rsa.21187