Spin charge carrier dynamics in poly(bis-alkylthioacetylene)

Initial and laser-irradiated poly(bis-alkylthioacetylene) (PATAC) samples were investigated by electron paramagnetic resonance (EPR) at X-band (9.6 GHz), Q-band (37 GHz), and D-band (140 GHz) in a wide temperature range. Two types of paramagnetic centers were proved to exist in laser-modified polyme...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied magnetic resonance 2002-10, Vol.23 (1), p.1-17
Hauptverfasser: Krinichnyi, V. I., Roth, H. -K., Schrödner, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Initial and laser-irradiated poly(bis-alkylthioacetylene) (PATAC) samples were investigated by electron paramagnetic resonance (EPR) at X-band (9.6 GHz), Q-band (37 GHz), and D-band (140 GHz) in a wide temperature range. Two types of paramagnetic centers were proved to exist in laser-modified polymer, namely, localized and mobile polarons with the concentration ratio and susceptibility depending on the irradiation dose and temperature. Superslow torsion motion of the polymer chains was studied by the saturation transfer method at D-band EPR. Additional information on the polymer chain segment dynamics was obtained by the spin probe method at X-band EPR. Spin-spin and spin-lattice relaxation times were measured separately by the steady-state saturation method at D-band EPR. Intrachain and interchain spin diffusion coefficients and conductivity arising from the polaron dynamics were calculated. It was shown that the polaron dynamics in laser-modified polymer is affected by the spin-spin interaction. The interchain charge transfer is stimulated by torsion motion of the polymer chains, whereas the total conductivity of irradiated PATAC is determined mainly by the dynamic of diamagnetic charge carriers. Magnetic, relaxation and dynamics parameters of PATAC were also shown to change during polymer storage.
ISSN:0937-9347
1613-7507
DOI:10.1007/BF03166180