Solving maximal covering location problem using genetic algorithm with local refinement

The maximal covering location problem (MCLP) deals with the problem of finding an optimal placement of a given number of facilities within a set of customers. Each customer has a specific demand and the facilities are to be placed in such a way that the total demand of the customers served by the fa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Soft computing (Berlin, Germany) Germany), 2018-06, Vol.22 (12), p.3891-3906
Hauptverfasser: Atta, Soumen, Sinha Mahapatra, Priya Ranjan, Mukhopadhyay, Anirban
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The maximal covering location problem (MCLP) deals with the problem of finding an optimal placement of a given number of facilities within a set of customers. Each customer has a specific demand and the facilities are to be placed in such a way that the total demand of the customers served by the facilities is maximized. In this article an improved genetic algorithm (GA)-based approach, which utilizes a local refinement strategy for faster convergence, is proposed to solve MCLP. The proposed algorithm is applied on several MCLP instances from literature and it is demonstrated that the proposed GA with local refinement gives better results in terms of percentage of coverage and computation time to find the solutions in almost all the cases. The proposed GA-based approach with local refinement is also found to outperform the other existing methods for most of the small as well as large instances of MCLP.
ISSN:1432-7643
1433-7479
DOI:10.1007/s00500-017-2598-3