Electron spin relaxation of radicals in γ-irradiated malonic acid and methyl malonic acid
Radicals generated by γ-irradiation of malonic acid and methyl malonic acid were studied as a function of temperature by inversion recovery, echo-detected saturation recovery and electron-electron double resonance (ELDOR) at X-band, and by continuous-wave saturation recovery at X-band and S-band. EL...
Gespeichert in:
Veröffentlicht in: | Applied magnetic resonance 2003-09, Vol.24 (3-4), p.261-276 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Radicals generated by γ-irradiation of malonic acid and methyl malonic acid were studied as a function of temperature by inversion recovery, echo-detected saturation recovery and electron-electron double resonance (ELDOR) at X-band, and by continuous-wave saturation recovery at X-band and S-band. ELDOR reductions for malonic acid radical in polycrystalline and single-crystal samples indicate that nuclear spin relaxation is faster than both electron spin relaxation and cross relaxation between 93 and 233 K. Deuteration of the carboxylate protons caused the maximum ELDOR reduction to shift from about 110 to 150 K, consistent with the assignment of the rapid nuclear spin relaxation to hydrogen-bonded proton dynamics. ELDOR enhancements for both radicals formed in methyl malonic acid indicate that cross relaxation is faster than both electron spin relaxation and nuclear spin relaxation between 77 and 220 K. Enhanced cross relaxation and electron spin relaxation are attributed to the rotation of methyl groups at a rate comparable to the electron Larmor frequency. The temperature dependence of the enhancement of 1/T1e was analyzed to determine the activation energies for methyl rotation. The same radical is formed in irradiated methyl malonic acid and L-alanine, but the barrier to rotation of the α-methyl is 500 K in the methyl malonic acid host and 1500 K in the L-alanine host, which indicates a large impact of the lattice on the barrier to rotation. |
---|---|
ISSN: | 0937-9347 1613-7507 |
DOI: | 10.1007/BF03166928 |