Localization of PMV-algebras
In this paper, we show that the going up and lying over theorems hold in PMV -algebras, and we prove that every · -prime ideal in a PMV -subalgebra is the intersection of a · -prime ideal in the overalgebra with the subalgebra. Also, we show that if P is a · -prime ideal of a unital PMV -algebra A a...
Gespeichert in:
Veröffentlicht in: | Soft computing (Berlin, Germany) Germany), 2018-01, Vol.22 (1), p.31-40 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we show that the going up and lying over theorems hold in
PMV
-algebras, and we prove that every
·
-prime ideal in a
PMV
-subalgebra is the intersection of a
·
-prime ideal in the overalgebra with the subalgebra. Also, we show that if
P
is a
·
-prime ideal of a unital
PMV
-algebra
A
and
A
′
is a subalgebra of
A
, having
P
as a maximal
·
-ideal, then
A
′
/
0
P
(
A
)
is a local
PMV
-algebra which is called the localization of
A
at
P
relative to
A
′
where
0
P
(
A
)
is the intersection of all
·
-prime ideals of
A
contained in
P
. |
---|---|
ISSN: | 1432-7643 1433-7479 |
DOI: | 10.1007/s00500-017-2690-8 |