Tightness of triangle inequality in uncertainty theory
In uncertainty theory, distance is defined as the difference value between uncertain variables. A triangle inequality d ( ξ , η ) ≤ 2 ( d ( ξ , τ ) + d ( τ , η ) ) has been proved before. This paper shows that the triangle inequality is tight. In addition, an inequality about expected value is discu...
Gespeichert in:
Veröffentlicht in: | Soft computing (Berlin, Germany) Germany), 2023-10, Vol.27 (20), p.14621-14630 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In uncertainty theory, distance is defined as the difference value between uncertain variables. A triangle inequality
d
(
ξ
,
η
)
≤
2
(
d
(
ξ
,
τ
)
+
d
(
τ
,
η
)
)
has been proved before. This paper shows that the triangle inequality is tight. In addition, an inequality about expected value is discussed. |
---|---|
ISSN: | 1432-7643 1433-7479 |
DOI: | 10.1007/s00500-023-09045-4 |