Tightness of triangle inequality in uncertainty theory

In uncertainty theory, distance is defined as the difference value between uncertain variables. A triangle inequality d ( ξ , η ) ≤ 2 ( d ( ξ , τ ) + d ( τ , η ) ) has been proved before. This paper shows that the triangle inequality is tight. In addition, an inequality about expected value is discu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Soft computing (Berlin, Germany) Germany), 2023-10, Vol.27 (20), p.14621-14630
Hauptverfasser: Jia, Yuxing, Lio, Waichon
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In uncertainty theory, distance is defined as the difference value between uncertain variables. A triangle inequality d ( ξ , η ) ≤ 2 ( d ( ξ , τ ) + d ( τ , η ) ) has been proved before. This paper shows that the triangle inequality is tight. In addition, an inequality about expected value is discussed.
ISSN:1432-7643
1433-7479
DOI:10.1007/s00500-023-09045-4