A Low-Power Hierarchical CNN Hardware Accelerator for Bearing Fault Diagnosis

This article presents a 2-D hierarchical convolutional neural network (HCNN) hardware accelerator that is implemented in a 40-nm CMOS technology for Case Western Reserve University (CWRU) bearing fault diagnosis. The hierarchical structure of the convolutional neural network (CNN) contributes to a r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on instrumentation and measurement 2024, Vol.73, p.1-11
Hauptverfasser: Liang, Yu-Pei, Hsu, Yao-Shun, Chung, Ching-Che
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This article presents a 2-D hierarchical convolutional neural network (HCNN) hardware accelerator that is implemented in a 40-nm CMOS technology for Case Western Reserve University (CWRU) bearing fault diagnosis. The hierarchical structure of the convolutional neural network (CNN) contributes to a reduction in both power consumption and computation time. The entire neural network parameters are 29k, and the total CNN computation is completed within 330 000 cycles, showcasing its real-time capability. The proposed design substantially diminishes the number of cycles necessitated for hardware calculations. Furthermore, this work incorporates Gaussian white noise into the vibration signal dataset for signal-to-noise ratio (SNR) analysis. A noisy training dataset is added to the original dataset for neural network training to improve the accuracy. In summary, the postlayout simulation of the proposed design facilitates real-time fault diagnosis at a clock frequency of 100 MHz, achieving an accuracy of 95.31%, and a power consumption of 65.608 mW. Also, when the proposed HCNN circuit was implemented on a field-programmable gate array (FPGA) evaluation board, it consumed 0.533 W at 55 MHz.
ISSN:0018-9456
1557-9662
DOI:10.1109/TIM.2024.3351229