Applications and design of cooperative multi-agent ARN-based systems

The Artificial Reaction Network (ARN) is an artificial chemistry inspired by Cell Signalling Networks. Its purpose is to represent chemical circuitry and to explore the computational properties responsible for generating emergent high-level behaviour. In this paper, the design and application of ARN...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Soft computing (Berlin, Germany) Germany), 2015-06, Vol.19 (6), p.1581-1594
Hauptverfasser: Gerrard, Claire E., McCall, John, Macleod, Christopher, Coghill, George M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The Artificial Reaction Network (ARN) is an artificial chemistry inspired by Cell Signalling Networks. Its purpose is to represent chemical circuitry and to explore the computational properties responsible for generating emergent high-level behaviour. In this paper, the design and application of ARN-based cell-like agents termed “Cytobots” are explored. Such agents provide a facility to explore the dynamics and emergent properties of multicellular systems. The Cytobot ARN is constructed by combining functional motifs found in real biochemical networks. By instantiating this ARN, multiple Cytobots are created, each of which is capable of recognising environmental patterns, stigmergic communication with others and controlling its own trajectory. Applications in biological simulation and robotics are investigated by first applying the agents to model the life-cycle phases of the cellular slime mould D. discoideum and then to simulate an oil-spill clean-up operation. The results demonstrate that an ARN-based approach provides a powerful tool for modelling multi-agent biological systems and also has application in swarm robotics.
ISSN:1432-7643
1433-7479
DOI:10.1007/s00500-014-1330-9