Anti-inflammatory drug releasing absorbable surgical sutures using poly(lactic-co-glycolic acid) particle carriers

The goal of the current study was to develop an absorbable surgical suture incorporating poly(lactic- co -glycolic acid) (PLGA) particles loaded with dexamethasone (DEX) as an anti-inflammatory drug. DEX-loaded PLGA (DEX/PLGA) particles, prepared using a water-in-oil emulsion method, were electrosta...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Polymer bulletin (Berlin, Germany) Germany), 2014-08, Vol.71 (8), p.1933-1946
Hauptverfasser: Lee, Du-Hyeong, Kwon, Tae-Yub, Kim, Kyo-Han, Kwon, Soon-Taek, Cho, Dae-Hyun, Jang, Soon Ho, Son, Jun Sik, Lee, Kyu-Bok
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The goal of the current study was to develop an absorbable surgical suture incorporating poly(lactic- co -glycolic acid) (PLGA) particles loaded with dexamethasone (DEX) as an anti-inflammatory drug. DEX-loaded PLGA (DEX/PLGA) particles, prepared using a water-in-oil emulsion method, were electrostatically immobilized onto the surface of absorbable sutures. The surfaces of these DEX/PLGA particles were coated with positively charged polyethyleneimine (PEI) molecules, which imparted a net positive surface charge. These modified PEI-coated DEX/PLGA (PEI/DEX/PLGA) particles were then immobilized on negatively charged absorbable suture surfaces by electrostatic attraction. The results showed that DEX was efficiently loaded into PLGA particles and that the surfaces of DEX/PLGA particles were successfully coated with PEI. PEI/DEX/PLGA particles were well dispersed and immobilized onto suture surfaces. In addition, PEI/DEX/PLGA particles remained adherent to suture surfaces in vitro and demonstrated sustained DEX release in phosphate-buffered saline (pH 7.4) at 37 °C for up to 28 days under static conditions. The tensile strength and elongation at break of PEI/DEX/PLGA particle-treated sutures were almost the same as that of non-treated control sutures. Findings of this study show that various therapeutic drugs could be efficiently incorporated into absorbable sutures using biodegradable polymeric particles, and suggest that the devised absorbable, drug-eluting, sutures offer a promising basis for a novel absorbable surgical suture system.
ISSN:0170-0839
1436-2449
DOI:10.1007/s00289-014-1164-8