Compatibility of waste rubber powder/polystyrene blends by the addition of styrene grafted styrene butadiene rubber copolymer: effect on morphology and properties
Waste rubber powder/polystyrene (WRP/PS) blends with different weight ratio were prepared with styrene grafted styrene butadiene rubber copolymer (PS-g-SBR) as a compatibilizer. The graft copolymer of PS-g-SBR was synthesized by emulsion polymerization method and confirmed through Fourier transform...
Gespeichert in:
Veröffentlicht in: | Polymer bulletin (Berlin, Germany) Germany), 2013-10, Vol.70 (10), p.2829-2841 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Waste rubber powder/polystyrene (WRP/PS) blends with different weight ratio were prepared with styrene grafted styrene butadiene rubber copolymer (PS-g-SBR) as a compatibilizer. The graft copolymer of PS-g-SBR was synthesized by emulsion polymerization method and confirmed through Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC). The copolymer at different weight ratio was subsequently added into the blends. The effects of weight ratio of WRP/PS and compatibilizer loading on mechanical properties were investigated. PS/WRP blends in a weight ratio of 80/20 showed higher impact strength. Moreover, the impact strength of the blend materials increased with the addition of SBR-g-PS, however, decreased at a high loading of the copolymer. The morphology and thermal properties of WRP/PS blends were examined by DSC, scanning electron microscopy (SEM), thermogravimetry (TG). DSC indicated that compared with PS/WRP blend, the glass transition temperature (
T
g
) of PS matrix phase in PS/WRP/SBR-g-PS blend shifted to low temperature because of the formation of chemical crosslinks or boundary layer between PS and WRP, and the
T
g
of WRP phase of both the PS/WRP and PS/WRP/SBR-g-PS blends did not appear. SEM results showed that interfacial adhesion in the blends with the PS-g-SBR copolymer was improved. The morphology was a typical continuous–discontinuous structure. PS and WRP presented continuous phase and discontinuous phase, respectively, indicating the moderate interface adhesion between WRP and PS matrix. TG illustrated that the onset of degradation temperature in the PS/WRP/PS-g-SBR blend decreased slightly by contrast with PS/WRP blend and the degradation of PS/WRP blends with and without SBR-g-PS was completed about at the same values. |
---|---|
ISSN: | 0170-0839 1436-2449 |
DOI: | 10.1007/s00289-013-0991-3 |