Semi-supervised model applied to the prediction of the response to preoperative chemotherapy for breast cancer

Breast cancer is the second most frequent one, and the first one affecting the women. The standard treatment has three main stages: a preoperative chemotherapy followed by a surgery operation, then an post-operatory chemotherapy. Because the response to the preoperative chemotherapy is correlated to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Soft computing (Berlin, Germany) Germany), 2011-06, Vol.15 (6), p.1137-1144
Hauptverfasser: Coelho, Frederico, Braga, Antônio de Pádua, Natowicz, René, Rouzier, Roman
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1144
container_issue 6
container_start_page 1137
container_title Soft computing (Berlin, Germany)
container_volume 15
creator Coelho, Frederico
Braga, Antônio de Pádua
Natowicz, René
Rouzier, Roman
description Breast cancer is the second most frequent one, and the first one affecting the women. The standard treatment has three main stages: a preoperative chemotherapy followed by a surgery operation, then an post-operatory chemotherapy. Because the response to the preoperative chemotherapy is correlated to a good prognosis, and because the clinical and biological information do not yield to efficient predictions of the response, a lot of research effort is being devoted to the design of predictors relying on the measurement of genes’ expression levels. In the present paper, we report our works for designing genomic predictors of the response to the preoperative chemotherapy, making use of a semi-supervised machine learning approach. The method is based on margin geometric information of patterns of low density areas, computed on a labeled dataset and on an unlabeled one.
doi_str_mv 10.1007/s00500-010-0589-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2917949913</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2917949913</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-8dc07fad876ef0dc551437c23bda387d327d7b2b038380479d48bbd1df94ff333</originalsourceid><addsrcrecordid>eNp1kMFOAyEQhonRxFp9AG8knlFYdgt7NI1akyYe1DNhYbDbdBeEbZO-vWzXxJOHCTPM9w_Mj9Ato_eMUvGQKK0oJZTlqGRN5BmasZJzIkpRn5_ygohFyS_RVUpbSgsmKj5D_Tt0LUn7APHQJrC48xZ2WIewa3M1eDxsAIcItjVD63vs3ekmQgq-TzASueuzXg_tAbDZQOczEXU4YucjbiLoNGCjewPxGl04vUtw83vO0efz08dyRdZvL6_LxzUxnC0GIq2hwmkrxQIctaaq8v-FKXhjNZfC8kJY0RQN5ZJLmje0pWway6yrS-c453N0N80N0X_vIQ1q6_exz0-qomaiLuuajRSbKBN9ShGcCrHtdDwqRtVoq5psVdlWNdqqZNYUkyZltv-C-Df5f9EPR8F8aw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2917949913</pqid></control><display><type>article</type><title>Semi-supervised model applied to the prediction of the response to preoperative chemotherapy for breast cancer</title><source>Springer Nature - Complete Springer Journals</source><source>ProQuest Central</source><creator>Coelho, Frederico ; Braga, Antônio de Pádua ; Natowicz, René ; Rouzier, Roman</creator><creatorcontrib>Coelho, Frederico ; Braga, Antônio de Pádua ; Natowicz, René ; Rouzier, Roman</creatorcontrib><description>Breast cancer is the second most frequent one, and the first one affecting the women. The standard treatment has three main stages: a preoperative chemotherapy followed by a surgery operation, then an post-operatory chemotherapy. Because the response to the preoperative chemotherapy is correlated to a good prognosis, and because the clinical and biological information do not yield to efficient predictions of the response, a lot of research effort is being devoted to the design of predictors relying on the measurement of genes’ expression levels. In the present paper, we report our works for designing genomic predictors of the response to the preoperative chemotherapy, making use of a semi-supervised machine learning approach. The method is based on margin geometric information of patterns of low density areas, computed on a labeled dataset and on an unlabeled one.</description><identifier>ISSN: 1432-7643</identifier><identifier>EISSN: 1433-7479</identifier><identifier>DOI: 10.1007/s00500-010-0589-8</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Algorithms ; Artificial Intelligence ; Breast cancer ; Cancer therapies ; Chemotherapy ; Clinical trials ; Computational Intelligence ; Control ; Datasets ; Engineering ; Focus ; Gene expression ; Machine learning ; Mathematical Logic and Foundations ; Mechatronics ; Neural networks ; Patients ; Robotics ; Semi-supervised learning</subject><ispartof>Soft computing (Berlin, Germany), 2011-06, Vol.15 (6), p.1137-1144</ispartof><rights>Springer-Verlag 2010</rights><rights>Springer-Verlag 2010.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-8dc07fad876ef0dc551437c23bda387d327d7b2b038380479d48bbd1df94ff333</citedby><cites>FETCH-LOGICAL-c316t-8dc07fad876ef0dc551437c23bda387d327d7b2b038380479d48bbd1df94ff333</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00500-010-0589-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2917949913?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,21367,27901,27902,33721,41464,42533,43781,51294</link.rule.ids></links><search><creatorcontrib>Coelho, Frederico</creatorcontrib><creatorcontrib>Braga, Antônio de Pádua</creatorcontrib><creatorcontrib>Natowicz, René</creatorcontrib><creatorcontrib>Rouzier, Roman</creatorcontrib><title>Semi-supervised model applied to the prediction of the response to preoperative chemotherapy for breast cancer</title><title>Soft computing (Berlin, Germany)</title><addtitle>Soft Comput</addtitle><description>Breast cancer is the second most frequent one, and the first one affecting the women. The standard treatment has three main stages: a preoperative chemotherapy followed by a surgery operation, then an post-operatory chemotherapy. Because the response to the preoperative chemotherapy is correlated to a good prognosis, and because the clinical and biological information do not yield to efficient predictions of the response, a lot of research effort is being devoted to the design of predictors relying on the measurement of genes’ expression levels. In the present paper, we report our works for designing genomic predictors of the response to the preoperative chemotherapy, making use of a semi-supervised machine learning approach. The method is based on margin geometric information of patterns of low density areas, computed on a labeled dataset and on an unlabeled one.</description><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Breast cancer</subject><subject>Cancer therapies</subject><subject>Chemotherapy</subject><subject>Clinical trials</subject><subject>Computational Intelligence</subject><subject>Control</subject><subject>Datasets</subject><subject>Engineering</subject><subject>Focus</subject><subject>Gene expression</subject><subject>Machine learning</subject><subject>Mathematical Logic and Foundations</subject><subject>Mechatronics</subject><subject>Neural networks</subject><subject>Patients</subject><subject>Robotics</subject><subject>Semi-supervised learning</subject><issn>1432-7643</issn><issn>1433-7479</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kMFOAyEQhonRxFp9AG8knlFYdgt7NI1akyYe1DNhYbDbdBeEbZO-vWzXxJOHCTPM9w_Mj9Ato_eMUvGQKK0oJZTlqGRN5BmasZJzIkpRn5_ygohFyS_RVUpbSgsmKj5D_Tt0LUn7APHQJrC48xZ2WIewa3M1eDxsAIcItjVD63vs3ekmQgq-TzASueuzXg_tAbDZQOczEXU4YucjbiLoNGCjewPxGl04vUtw83vO0efz08dyRdZvL6_LxzUxnC0GIq2hwmkrxQIctaaq8v-FKXhjNZfC8kJY0RQN5ZJLmje0pWway6yrS-c453N0N80N0X_vIQ1q6_exz0-qomaiLuuajRSbKBN9ShGcCrHtdDwqRtVoq5psVdlWNdqqZNYUkyZltv-C-Df5f9EPR8F8aw</recordid><startdate>20110601</startdate><enddate>20110601</enddate><creator>Coelho, Frederico</creator><creator>Braga, Antônio de Pádua</creator><creator>Natowicz, René</creator><creator>Rouzier, Roman</creator><general>Springer-Verlag</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20110601</creationdate><title>Semi-supervised model applied to the prediction of the response to preoperative chemotherapy for breast cancer</title><author>Coelho, Frederico ; Braga, Antônio de Pádua ; Natowicz, René ; Rouzier, Roman</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-8dc07fad876ef0dc551437c23bda387d327d7b2b038380479d48bbd1df94ff333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Breast cancer</topic><topic>Cancer therapies</topic><topic>Chemotherapy</topic><topic>Clinical trials</topic><topic>Computational Intelligence</topic><topic>Control</topic><topic>Datasets</topic><topic>Engineering</topic><topic>Focus</topic><topic>Gene expression</topic><topic>Machine learning</topic><topic>Mathematical Logic and Foundations</topic><topic>Mechatronics</topic><topic>Neural networks</topic><topic>Patients</topic><topic>Robotics</topic><topic>Semi-supervised learning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Coelho, Frederico</creatorcontrib><creatorcontrib>Braga, Antônio de Pádua</creatorcontrib><creatorcontrib>Natowicz, René</creatorcontrib><creatorcontrib>Rouzier, Roman</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Soft computing (Berlin, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Coelho, Frederico</au><au>Braga, Antônio de Pádua</au><au>Natowicz, René</au><au>Rouzier, Roman</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Semi-supervised model applied to the prediction of the response to preoperative chemotherapy for breast cancer</atitle><jtitle>Soft computing (Berlin, Germany)</jtitle><stitle>Soft Comput</stitle><date>2011-06-01</date><risdate>2011</risdate><volume>15</volume><issue>6</issue><spage>1137</spage><epage>1144</epage><pages>1137-1144</pages><issn>1432-7643</issn><eissn>1433-7479</eissn><abstract>Breast cancer is the second most frequent one, and the first one affecting the women. The standard treatment has three main stages: a preoperative chemotherapy followed by a surgery operation, then an post-operatory chemotherapy. Because the response to the preoperative chemotherapy is correlated to a good prognosis, and because the clinical and biological information do not yield to efficient predictions of the response, a lot of research effort is being devoted to the design of predictors relying on the measurement of genes’ expression levels. In the present paper, we report our works for designing genomic predictors of the response to the preoperative chemotherapy, making use of a semi-supervised machine learning approach. The method is based on margin geometric information of patterns of low density areas, computed on a labeled dataset and on an unlabeled one.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><doi>10.1007/s00500-010-0589-8</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1432-7643
ispartof Soft computing (Berlin, Germany), 2011-06, Vol.15 (6), p.1137-1144
issn 1432-7643
1433-7479
language eng
recordid cdi_proquest_journals_2917949913
source Springer Nature - Complete Springer Journals; ProQuest Central
subjects Algorithms
Artificial Intelligence
Breast cancer
Cancer therapies
Chemotherapy
Clinical trials
Computational Intelligence
Control
Datasets
Engineering
Focus
Gene expression
Machine learning
Mathematical Logic and Foundations
Mechatronics
Neural networks
Patients
Robotics
Semi-supervised learning
title Semi-supervised model applied to the prediction of the response to preoperative chemotherapy for breast cancer
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T16%3A34%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Semi-supervised%20model%20applied%20to%20the%20prediction%20of%20the%20response%20to%20preoperative%20chemotherapy%20for%20breast%20cancer&rft.jtitle=Soft%20computing%20(Berlin,%20Germany)&rft.au=Coelho,%20Frederico&rft.date=2011-06-01&rft.volume=15&rft.issue=6&rft.spage=1137&rft.epage=1144&rft.pages=1137-1144&rft.issn=1432-7643&rft.eissn=1433-7479&rft_id=info:doi/10.1007/s00500-010-0589-8&rft_dat=%3Cproquest_cross%3E2917949913%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2917949913&rft_id=info:pmid/&rfr_iscdi=true