Applying hybrid genetic–PSO technique for tuning an adaptive PID controller used in a chemical process

The conventional PID controller has static parameters that cannot be changed at different operating conditions. As a result, the term ‘adaptive PID controller’ has appeared to solve this problem. This controller can be tuned using intelligent techniques such as Fuzzy Logic Control, Neural Network Co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Soft computing (Berlin, Germany) Germany), 2020-03, Vol.24 (5), p.3455-3474
Hauptverfasser: El-Gendy, Eman M., Saafan, Mahmoud M., Elksas, Mohamed S., Saraya, Sabry F., Areed, Fayez F. G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The conventional PID controller has static parameters that cannot be changed at different operating conditions. As a result, the term ‘adaptive PID controller’ has appeared to solve this problem. This controller can be tuned using intelligent techniques such as Fuzzy Logic Control, Neural Network Control, or Adaptive Neuro-Fuzzy Inference Systems. However, the choice of the suitable parameters for these intelligent controllers has a direct effect on their performance. Metaheuristics algorithms—with their powerful performance, speed, and optimal parameter selection—can be applied for choosing controller parameters efficiently. In this paper, a hybrid of genetic algorithm and particle swarm optimization is proposed to tune the parameters of different adaptive PID controllers. To evaluate the performance of the proposed hybrid optimization method on the different adaptive PID controllers, these controllers are applied to control the operation of one of the most difficult chemical processes, the divided wall distillation column. The proposed column used in this work separates a ternary mixture of ethanol, propanol, and n-butanol. Our proposed hybrid optimization technique is compared with the genetic algorithm, and simulation results show that our proposed hybrid genetic-particle swarm technique outperforms genetic algorithm for different disturbances.
ISSN:1432-7643
1433-7479
DOI:10.1007/s00500-019-04106-z