Cooperative particle swarm optimization using MapReduce

Cooperative particle swarm optimization (short in CPSO) is an effective evolutionary algorithm for optimization and has attracted a lot of research attention. As real-world optimization problems become complex and large scale, population-based optimization algorithms may take a long time to complete...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Soft computing (Berlin, Germany) Germany), 2017-11, Vol.21 (22), p.6593-6603
Hauptverfasser: Wang, Yang, Li, Yangyang, Chen, Zhenghan, Xue, Yu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Cooperative particle swarm optimization (short in CPSO) is an effective evolutionary algorithm for optimization and has attracted a lot of research attention. As real-world optimization problems become complex and large scale, population-based optimization algorithms may take a long time to complete a task. Responding to this trend, CPSO, as a serial evolutionary algorithm, also needs to be updated and accelerated. On the other hand, MapReduce is a programming model for parallel computation and accelerates many tasks successfully. In this paper, we present MapReduce cooperative particle swarm optimization (short in MRCPSO) which implements CPSO-S, a version of CPSO, using MapReduce model. MRCPSO is compared with the original CPSO-S and two algorithms in CEC 2013 special session and competition on real-parameter single-objective optimization. The result on benchmarks shows that MRCPSO outperforms the original CPSO-S significantly on both time and the quality of solution. And in the comparisons with the other two algorithms, MRCPSO has better performance on several problems, while the advantage on time is significant.
ISSN:1432-7643
1433-7479
DOI:10.1007/s00500-016-2390-9