Dominance rule and opposition-based particle swarm optimization for two-stage assembly scheduling with time cumulated learning effect

This paper introduces a two-stage assembly flowshop scheduling model with time cumulated learning effect, which exists in many realistic scheduling settings. By the time cumulated learning effect, we mean that the actual job processing time of a job depends on its scheduled position as well as the p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Soft computing (Berlin, Germany) Germany), 2019-10, Vol.23 (19), p.9617-9628
Hauptverfasser: Wang, Dujuan, Qiu, Huaxin, Wu, Chin-Chia, Lin, Win-Chin, Lai, Kunjung, Cheng, Shuenn-Ren
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper introduces a two-stage assembly flowshop scheduling model with time cumulated learning effect, which exists in many realistic scheduling settings. By the time cumulated learning effect, we mean that the actual job processing time of a job depends on its scheduled position as well as the processing times of the jobs already processed. The first stage consists of two independently working machines where each machine produces its own component. The second stage consists of a single assembly machine. The objective is to identify a schedule that minimizes the total completion time of all jobs. With analysis on the discussed problem, some dominance rules are developed to optimize the solving procedure. Incorporating with the developed dominance rules, a dominance rule and opposition-based particle swarm optimization algorithm (DR-OPSO) and branch-and-bound are devised. Computational experiments have been conducted to compare the performances of the proposed DR-OPSO and branch-and-bound through comparing with the standard O-PSO and PSO. The results fully demonstrate the efficiency and effectiveness of the proposed DR-OPSO algorithm, providing references to the relevant decision-makers in practice.
ISSN:1432-7643
1433-7479
DOI:10.1007/s00500-018-3525-y