Solving variable-order fractional differential algebraic equations via generalized fuzzy hyperbolic model with application in electric circuit modeling
In this paper, a new approach based on a generalized fuzzy hyperbolic model is used for the numerical solution of variable-order fractional differential algebraic equations. The fractional derivative is described in the Atangana–Baleanu sense that is a new derivative with fractional order based on t...
Gespeichert in:
Veröffentlicht in: | Soft computing (Berlin, Germany) Germany), 2020-11, Vol.24 (22), p.16745-16758 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, a new approach based on a generalized fuzzy hyperbolic model is used for the numerical solution of variable-order fractional differential algebraic equations. The fractional derivative is described in the Atangana–Baleanu sense that is a new derivative with fractional order based on the generalized Mittag–Leffler function. First, by using fuzzy solutions with adjustable parameters, the variable-order fractional differential algebraic equations are reduced to a problem consisting of solving a system of algebraic equations. For adjusting the parameters of fuzzy solutions, an unconstrained optimization problem is then considered. A learning algorithm is also presented for solving the unconstrained optimization problem. Finally, some numerical examples are given to verify the efficiency and accuracy of the proposed approach. |
---|---|
ISSN: | 1432-7643 1433-7479 |
DOI: | 10.1007/s00500-020-04969-7 |