Vibration fault diagnosis through genetic matching pursuit optimization
This paper addresses the problem of fault diagnosis performed on a mechanical system, based on acquired vibrations from bearings. In this aim, an optimization algorithm resulted from the alliance between a time–frequency–scale signal processing method (the matching pursuit) and an evolutionary compu...
Gespeichert in:
Veröffentlicht in: | Soft computing (Berlin, Germany) Germany), 2019-09, Vol.23 (17), p.8131-8157 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8157 |
---|---|
container_issue | 17 |
container_start_page | 8131 |
container_title | Soft computing (Berlin, Germany) |
container_volume | 23 |
creator | Stefanoiu, Dan Culita, Janetta Ionescu, Florin |
description | This paper addresses the problem of fault diagnosis performed on a mechanical system, based on acquired vibrations from bearings. In this aim, an optimization algorithm resulted from the alliance between a time–frequency–scale signal processing method (the matching pursuit) and an evolutionary computing technique (mainly, a genetic algorithm) is introduced. The matching pursuit method itself leads to a NP-hard procedure, but, with the help of a metaheuristic, the procedure becomes computationally efficient. A generalization of Baker’s procedure implementing the stochastic universal sampling mechanism, as well as a new concept, namely
the Boltzmann annealing selection
, is introduced, in order to design the genetic algorithm appropriately. This latter not only plays an important role in convergence speed, but also constitutes the basis of a (self) adaptive mechanism aiming to keep in balance the exploration and exploitation features. Based on the optimal solution found through the genetic matching pursuit procedure, the bearings fault diagnosis can successfully be performed, even in case of multiple defects and without prior training of some defect classification model. |
doi_str_mv | 10.1007/s00500-018-3450-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2917905593</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2917905593</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-25d11176836a1059a62ffe82e9fbde8fa59f081e1102799b15d49707427993d53</originalsourceid><addsrcrecordid>eNp1kLFOwzAQhi0EEqXwAGyRmA13dhzHI6qgRarEAqyWm9ipqzYJtjPA05M2SExM95_0f3fSR8gtwj0CyIcIIAAoYEl5LsZwRmaYc05lLtX5KTMqi5xfkqsYdwAMpeAzsvzwm2CS79rMmWGfstqbpu2ij1nahm5otlljW5t8lR1Mqra-bbJ-CHHwKev65A_--0Rfkwtn9tHe_M45eX9-elus6Pp1-bJ4XNOKY5EoEzUiyqLkhUEQyhTMOVsyq9ymtqUzQjko0SICk0ptUNS5kiDz48Zrwefkbrrbh-5zsDHpXTeEdnypmUKpQAjFxxZOrSp0MQbrdB_8wYQvjaCPvvTkS4--9NGXhpFhExPHbtvY8Hf5f-gHuKFs9g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2917905593</pqid></control><display><type>article</type><title>Vibration fault diagnosis through genetic matching pursuit optimization</title><source>Springer Nature - Complete Springer Journals</source><source>ProQuest Central UK/Ireland</source><source>ProQuest Central</source><creator>Stefanoiu, Dan ; Culita, Janetta ; Ionescu, Florin</creator><creatorcontrib>Stefanoiu, Dan ; Culita, Janetta ; Ionescu, Florin</creatorcontrib><description>This paper addresses the problem of fault diagnosis performed on a mechanical system, based on acquired vibrations from bearings. In this aim, an optimization algorithm resulted from the alliance between a time–frequency–scale signal processing method (the matching pursuit) and an evolutionary computing technique (mainly, a genetic algorithm) is introduced. The matching pursuit method itself leads to a NP-hard procedure, but, with the help of a metaheuristic, the procedure becomes computationally efficient. A generalization of Baker’s procedure implementing the stochastic universal sampling mechanism, as well as a new concept, namely
the Boltzmann annealing selection
, is introduced, in order to design the genetic algorithm appropriately. This latter not only plays an important role in convergence speed, but also constitutes the basis of a (self) adaptive mechanism aiming to keep in balance the exploration and exploitation features. Based on the optimal solution found through the genetic matching pursuit procedure, the bearings fault diagnosis can successfully be performed, even in case of multiple defects and without prior training of some defect classification model.</description><identifier>ISSN: 1432-7643</identifier><identifier>EISSN: 1433-7479</identifier><identifier>DOI: 10.1007/s00500-018-3450-0</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Accuracy ; Algorithms ; Artificial Intelligence ; Classification ; Computational Intelligence ; Control ; Defects ; Dictionaries ; Engineering ; Fault diagnosis ; Fractals ; Genetic algorithms ; Heuristic methods ; Matched pursuit ; Matching ; Mathematical Logic and Foundations ; Mechanical systems ; Mechatronics ; Methodologies and Application ; Methods ; Neural networks ; Optimization ; Robotics ; Signal processing ; Support vector machines ; Vibration</subject><ispartof>Soft computing (Berlin, Germany), 2019-09, Vol.23 (17), p.8131-8157</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2018</rights><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2018.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-25d11176836a1059a62ffe82e9fbde8fa59f081e1102799b15d49707427993d53</citedby><cites>FETCH-LOGICAL-c316t-25d11176836a1059a62ffe82e9fbde8fa59f081e1102799b15d49707427993d53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00500-018-3450-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2917905593?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,21368,27903,27904,33723,41467,42536,43784,51298,64362,64366,72216</link.rule.ids></links><search><creatorcontrib>Stefanoiu, Dan</creatorcontrib><creatorcontrib>Culita, Janetta</creatorcontrib><creatorcontrib>Ionescu, Florin</creatorcontrib><title>Vibration fault diagnosis through genetic matching pursuit optimization</title><title>Soft computing (Berlin, Germany)</title><addtitle>Soft Comput</addtitle><description>This paper addresses the problem of fault diagnosis performed on a mechanical system, based on acquired vibrations from bearings. In this aim, an optimization algorithm resulted from the alliance between a time–frequency–scale signal processing method (the matching pursuit) and an evolutionary computing technique (mainly, a genetic algorithm) is introduced. The matching pursuit method itself leads to a NP-hard procedure, but, with the help of a metaheuristic, the procedure becomes computationally efficient. A generalization of Baker’s procedure implementing the stochastic universal sampling mechanism, as well as a new concept, namely
the Boltzmann annealing selection
, is introduced, in order to design the genetic algorithm appropriately. This latter not only plays an important role in convergence speed, but also constitutes the basis of a (self) adaptive mechanism aiming to keep in balance the exploration and exploitation features. Based on the optimal solution found through the genetic matching pursuit procedure, the bearings fault diagnosis can successfully be performed, even in case of multiple defects and without prior training of some defect classification model.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Classification</subject><subject>Computational Intelligence</subject><subject>Control</subject><subject>Defects</subject><subject>Dictionaries</subject><subject>Engineering</subject><subject>Fault diagnosis</subject><subject>Fractals</subject><subject>Genetic algorithms</subject><subject>Heuristic methods</subject><subject>Matched pursuit</subject><subject>Matching</subject><subject>Mathematical Logic and Foundations</subject><subject>Mechanical systems</subject><subject>Mechatronics</subject><subject>Methodologies and Application</subject><subject>Methods</subject><subject>Neural networks</subject><subject>Optimization</subject><subject>Robotics</subject><subject>Signal processing</subject><subject>Support vector machines</subject><subject>Vibration</subject><issn>1432-7643</issn><issn>1433-7479</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kLFOwzAQhi0EEqXwAGyRmA13dhzHI6qgRarEAqyWm9ipqzYJtjPA05M2SExM95_0f3fSR8gtwj0CyIcIIAAoYEl5LsZwRmaYc05lLtX5KTMqi5xfkqsYdwAMpeAzsvzwm2CS79rMmWGfstqbpu2ij1nahm5otlljW5t8lR1Mqra-bbJ-CHHwKev65A_--0Rfkwtn9tHe_M45eX9-elus6Pp1-bJ4XNOKY5EoEzUiyqLkhUEQyhTMOVsyq9ymtqUzQjko0SICk0ptUNS5kiDz48Zrwefkbrrbh-5zsDHpXTeEdnypmUKpQAjFxxZOrSp0MQbrdB_8wYQvjaCPvvTkS4--9NGXhpFhExPHbtvY8Hf5f-gHuKFs9g</recordid><startdate>20190901</startdate><enddate>20190901</enddate><creator>Stefanoiu, Dan</creator><creator>Culita, Janetta</creator><creator>Ionescu, Florin</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20190901</creationdate><title>Vibration fault diagnosis through genetic matching pursuit optimization</title><author>Stefanoiu, Dan ; Culita, Janetta ; Ionescu, Florin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-25d11176836a1059a62ffe82e9fbde8fa59f081e1102799b15d49707427993d53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Classification</topic><topic>Computational Intelligence</topic><topic>Control</topic><topic>Defects</topic><topic>Dictionaries</topic><topic>Engineering</topic><topic>Fault diagnosis</topic><topic>Fractals</topic><topic>Genetic algorithms</topic><topic>Heuristic methods</topic><topic>Matched pursuit</topic><topic>Matching</topic><topic>Mathematical Logic and Foundations</topic><topic>Mechanical systems</topic><topic>Mechatronics</topic><topic>Methodologies and Application</topic><topic>Methods</topic><topic>Neural networks</topic><topic>Optimization</topic><topic>Robotics</topic><topic>Signal processing</topic><topic>Support vector machines</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stefanoiu, Dan</creatorcontrib><creatorcontrib>Culita, Janetta</creatorcontrib><creatorcontrib>Ionescu, Florin</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Soft computing (Berlin, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stefanoiu, Dan</au><au>Culita, Janetta</au><au>Ionescu, Florin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Vibration fault diagnosis through genetic matching pursuit optimization</atitle><jtitle>Soft computing (Berlin, Germany)</jtitle><stitle>Soft Comput</stitle><date>2019-09-01</date><risdate>2019</risdate><volume>23</volume><issue>17</issue><spage>8131</spage><epage>8157</epage><pages>8131-8157</pages><issn>1432-7643</issn><eissn>1433-7479</eissn><abstract>This paper addresses the problem of fault diagnosis performed on a mechanical system, based on acquired vibrations from bearings. In this aim, an optimization algorithm resulted from the alliance between a time–frequency–scale signal processing method (the matching pursuit) and an evolutionary computing technique (mainly, a genetic algorithm) is introduced. The matching pursuit method itself leads to a NP-hard procedure, but, with the help of a metaheuristic, the procedure becomes computationally efficient. A generalization of Baker’s procedure implementing the stochastic universal sampling mechanism, as well as a new concept, namely
the Boltzmann annealing selection
, is introduced, in order to design the genetic algorithm appropriately. This latter not only plays an important role in convergence speed, but also constitutes the basis of a (self) adaptive mechanism aiming to keep in balance the exploration and exploitation features. Based on the optimal solution found through the genetic matching pursuit procedure, the bearings fault diagnosis can successfully be performed, even in case of multiple defects and without prior training of some defect classification model.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00500-018-3450-0</doi><tpages>27</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1432-7643 |
ispartof | Soft computing (Berlin, Germany), 2019-09, Vol.23 (17), p.8131-8157 |
issn | 1432-7643 1433-7479 |
language | eng |
recordid | cdi_proquest_journals_2917905593 |
source | Springer Nature - Complete Springer Journals; ProQuest Central UK/Ireland; ProQuest Central |
subjects | Accuracy Algorithms Artificial Intelligence Classification Computational Intelligence Control Defects Dictionaries Engineering Fault diagnosis Fractals Genetic algorithms Heuristic methods Matched pursuit Matching Mathematical Logic and Foundations Mechanical systems Mechatronics Methodologies and Application Methods Neural networks Optimization Robotics Signal processing Support vector machines Vibration |
title | Vibration fault diagnosis through genetic matching pursuit optimization |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T16%3A28%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Vibration%20fault%20diagnosis%20through%20genetic%20matching%20pursuit%20optimization&rft.jtitle=Soft%20computing%20(Berlin,%20Germany)&rft.au=Stefanoiu,%20Dan&rft.date=2019-09-01&rft.volume=23&rft.issue=17&rft.spage=8131&rft.epage=8157&rft.pages=8131-8157&rft.issn=1432-7643&rft.eissn=1433-7479&rft_id=info:doi/10.1007/s00500-018-3450-0&rft_dat=%3Cproquest_cross%3E2917905593%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2917905593&rft_id=info:pmid/&rfr_iscdi=true |