Vibration fault diagnosis through genetic matching pursuit optimization

This paper addresses the problem of fault diagnosis performed on a mechanical system, based on acquired vibrations from bearings. In this aim, an optimization algorithm resulted from the alliance between a time–frequency–scale signal processing method (the matching pursuit) and an evolutionary compu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Soft computing (Berlin, Germany) Germany), 2019-09, Vol.23 (17), p.8131-8157
Hauptverfasser: Stefanoiu, Dan, Culita, Janetta, Ionescu, Florin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8157
container_issue 17
container_start_page 8131
container_title Soft computing (Berlin, Germany)
container_volume 23
creator Stefanoiu, Dan
Culita, Janetta
Ionescu, Florin
description This paper addresses the problem of fault diagnosis performed on a mechanical system, based on acquired vibrations from bearings. In this aim, an optimization algorithm resulted from the alliance between a time–frequency–scale signal processing method (the matching pursuit) and an evolutionary computing technique (mainly, a genetic algorithm) is introduced. The matching pursuit method itself leads to a NP-hard procedure, but, with the help of a metaheuristic, the procedure becomes computationally efficient. A generalization of Baker’s procedure implementing the stochastic universal sampling mechanism, as well as a new concept, namely the Boltzmann annealing selection , is introduced, in order to design the genetic algorithm appropriately. This latter not only plays an important role in convergence speed, but also constitutes the basis of a (self) adaptive mechanism aiming to keep in balance the exploration and exploitation features. Based on the optimal solution found through the genetic matching pursuit procedure, the bearings fault diagnosis can successfully be performed, even in case of multiple defects and without prior training of some defect classification model.
doi_str_mv 10.1007/s00500-018-3450-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2917905593</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2917905593</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-25d11176836a1059a62ffe82e9fbde8fa59f081e1102799b15d49707427993d53</originalsourceid><addsrcrecordid>eNp1kLFOwzAQhi0EEqXwAGyRmA13dhzHI6qgRarEAqyWm9ipqzYJtjPA05M2SExM95_0f3fSR8gtwj0CyIcIIAAoYEl5LsZwRmaYc05lLtX5KTMqi5xfkqsYdwAMpeAzsvzwm2CS79rMmWGfstqbpu2ij1nahm5otlljW5t8lR1Mqra-bbJ-CHHwKev65A_--0Rfkwtn9tHe_M45eX9-elus6Pp1-bJ4XNOKY5EoEzUiyqLkhUEQyhTMOVsyq9ymtqUzQjko0SICk0ptUNS5kiDz48Zrwefkbrrbh-5zsDHpXTeEdnypmUKpQAjFxxZOrSp0MQbrdB_8wYQvjaCPvvTkS4--9NGXhpFhExPHbtvY8Hf5f-gHuKFs9g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2917905593</pqid></control><display><type>article</type><title>Vibration fault diagnosis through genetic matching pursuit optimization</title><source>Springer Nature - Complete Springer Journals</source><source>ProQuest Central UK/Ireland</source><source>ProQuest Central</source><creator>Stefanoiu, Dan ; Culita, Janetta ; Ionescu, Florin</creator><creatorcontrib>Stefanoiu, Dan ; Culita, Janetta ; Ionescu, Florin</creatorcontrib><description>This paper addresses the problem of fault diagnosis performed on a mechanical system, based on acquired vibrations from bearings. In this aim, an optimization algorithm resulted from the alliance between a time–frequency–scale signal processing method (the matching pursuit) and an evolutionary computing technique (mainly, a genetic algorithm) is introduced. The matching pursuit method itself leads to a NP-hard procedure, but, with the help of a metaheuristic, the procedure becomes computationally efficient. A generalization of Baker’s procedure implementing the stochastic universal sampling mechanism, as well as a new concept, namely the Boltzmann annealing selection , is introduced, in order to design the genetic algorithm appropriately. This latter not only plays an important role in convergence speed, but also constitutes the basis of a (self) adaptive mechanism aiming to keep in balance the exploration and exploitation features. Based on the optimal solution found through the genetic matching pursuit procedure, the bearings fault diagnosis can successfully be performed, even in case of multiple defects and without prior training of some defect classification model.</description><identifier>ISSN: 1432-7643</identifier><identifier>EISSN: 1433-7479</identifier><identifier>DOI: 10.1007/s00500-018-3450-0</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Accuracy ; Algorithms ; Artificial Intelligence ; Classification ; Computational Intelligence ; Control ; Defects ; Dictionaries ; Engineering ; Fault diagnosis ; Fractals ; Genetic algorithms ; Heuristic methods ; Matched pursuit ; Matching ; Mathematical Logic and Foundations ; Mechanical systems ; Mechatronics ; Methodologies and Application ; Methods ; Neural networks ; Optimization ; Robotics ; Signal processing ; Support vector machines ; Vibration</subject><ispartof>Soft computing (Berlin, Germany), 2019-09, Vol.23 (17), p.8131-8157</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2018</rights><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2018.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-25d11176836a1059a62ffe82e9fbde8fa59f081e1102799b15d49707427993d53</citedby><cites>FETCH-LOGICAL-c316t-25d11176836a1059a62ffe82e9fbde8fa59f081e1102799b15d49707427993d53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00500-018-3450-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2917905593?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,21368,27903,27904,33723,41467,42536,43784,51298,64362,64366,72216</link.rule.ids></links><search><creatorcontrib>Stefanoiu, Dan</creatorcontrib><creatorcontrib>Culita, Janetta</creatorcontrib><creatorcontrib>Ionescu, Florin</creatorcontrib><title>Vibration fault diagnosis through genetic matching pursuit optimization</title><title>Soft computing (Berlin, Germany)</title><addtitle>Soft Comput</addtitle><description>This paper addresses the problem of fault diagnosis performed on a mechanical system, based on acquired vibrations from bearings. In this aim, an optimization algorithm resulted from the alliance between a time–frequency–scale signal processing method (the matching pursuit) and an evolutionary computing technique (mainly, a genetic algorithm) is introduced. The matching pursuit method itself leads to a NP-hard procedure, but, with the help of a metaheuristic, the procedure becomes computationally efficient. A generalization of Baker’s procedure implementing the stochastic universal sampling mechanism, as well as a new concept, namely the Boltzmann annealing selection , is introduced, in order to design the genetic algorithm appropriately. This latter not only plays an important role in convergence speed, but also constitutes the basis of a (self) adaptive mechanism aiming to keep in balance the exploration and exploitation features. Based on the optimal solution found through the genetic matching pursuit procedure, the bearings fault diagnosis can successfully be performed, even in case of multiple defects and without prior training of some defect classification model.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Classification</subject><subject>Computational Intelligence</subject><subject>Control</subject><subject>Defects</subject><subject>Dictionaries</subject><subject>Engineering</subject><subject>Fault diagnosis</subject><subject>Fractals</subject><subject>Genetic algorithms</subject><subject>Heuristic methods</subject><subject>Matched pursuit</subject><subject>Matching</subject><subject>Mathematical Logic and Foundations</subject><subject>Mechanical systems</subject><subject>Mechatronics</subject><subject>Methodologies and Application</subject><subject>Methods</subject><subject>Neural networks</subject><subject>Optimization</subject><subject>Robotics</subject><subject>Signal processing</subject><subject>Support vector machines</subject><subject>Vibration</subject><issn>1432-7643</issn><issn>1433-7479</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kLFOwzAQhi0EEqXwAGyRmA13dhzHI6qgRarEAqyWm9ipqzYJtjPA05M2SExM95_0f3fSR8gtwj0CyIcIIAAoYEl5LsZwRmaYc05lLtX5KTMqi5xfkqsYdwAMpeAzsvzwm2CS79rMmWGfstqbpu2ij1nahm5otlljW5t8lR1Mqra-bbJ-CHHwKev65A_--0Rfkwtn9tHe_M45eX9-elus6Pp1-bJ4XNOKY5EoEzUiyqLkhUEQyhTMOVsyq9ymtqUzQjko0SICk0ptUNS5kiDz48Zrwefkbrrbh-5zsDHpXTeEdnypmUKpQAjFxxZOrSp0MQbrdB_8wYQvjaCPvvTkS4--9NGXhpFhExPHbtvY8Hf5f-gHuKFs9g</recordid><startdate>20190901</startdate><enddate>20190901</enddate><creator>Stefanoiu, Dan</creator><creator>Culita, Janetta</creator><creator>Ionescu, Florin</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20190901</creationdate><title>Vibration fault diagnosis through genetic matching pursuit optimization</title><author>Stefanoiu, Dan ; Culita, Janetta ; Ionescu, Florin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-25d11176836a1059a62ffe82e9fbde8fa59f081e1102799b15d49707427993d53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Classification</topic><topic>Computational Intelligence</topic><topic>Control</topic><topic>Defects</topic><topic>Dictionaries</topic><topic>Engineering</topic><topic>Fault diagnosis</topic><topic>Fractals</topic><topic>Genetic algorithms</topic><topic>Heuristic methods</topic><topic>Matched pursuit</topic><topic>Matching</topic><topic>Mathematical Logic and Foundations</topic><topic>Mechanical systems</topic><topic>Mechatronics</topic><topic>Methodologies and Application</topic><topic>Methods</topic><topic>Neural networks</topic><topic>Optimization</topic><topic>Robotics</topic><topic>Signal processing</topic><topic>Support vector machines</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stefanoiu, Dan</creatorcontrib><creatorcontrib>Culita, Janetta</creatorcontrib><creatorcontrib>Ionescu, Florin</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Soft computing (Berlin, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stefanoiu, Dan</au><au>Culita, Janetta</au><au>Ionescu, Florin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Vibration fault diagnosis through genetic matching pursuit optimization</atitle><jtitle>Soft computing (Berlin, Germany)</jtitle><stitle>Soft Comput</stitle><date>2019-09-01</date><risdate>2019</risdate><volume>23</volume><issue>17</issue><spage>8131</spage><epage>8157</epage><pages>8131-8157</pages><issn>1432-7643</issn><eissn>1433-7479</eissn><abstract>This paper addresses the problem of fault diagnosis performed on a mechanical system, based on acquired vibrations from bearings. In this aim, an optimization algorithm resulted from the alliance between a time–frequency–scale signal processing method (the matching pursuit) and an evolutionary computing technique (mainly, a genetic algorithm) is introduced. The matching pursuit method itself leads to a NP-hard procedure, but, with the help of a metaheuristic, the procedure becomes computationally efficient. A generalization of Baker’s procedure implementing the stochastic universal sampling mechanism, as well as a new concept, namely the Boltzmann annealing selection , is introduced, in order to design the genetic algorithm appropriately. This latter not only plays an important role in convergence speed, but also constitutes the basis of a (self) adaptive mechanism aiming to keep in balance the exploration and exploitation features. Based on the optimal solution found through the genetic matching pursuit procedure, the bearings fault diagnosis can successfully be performed, even in case of multiple defects and without prior training of some defect classification model.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00500-018-3450-0</doi><tpages>27</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1432-7643
ispartof Soft computing (Berlin, Germany), 2019-09, Vol.23 (17), p.8131-8157
issn 1432-7643
1433-7479
language eng
recordid cdi_proquest_journals_2917905593
source Springer Nature - Complete Springer Journals; ProQuest Central UK/Ireland; ProQuest Central
subjects Accuracy
Algorithms
Artificial Intelligence
Classification
Computational Intelligence
Control
Defects
Dictionaries
Engineering
Fault diagnosis
Fractals
Genetic algorithms
Heuristic methods
Matched pursuit
Matching
Mathematical Logic and Foundations
Mechanical systems
Mechatronics
Methodologies and Application
Methods
Neural networks
Optimization
Robotics
Signal processing
Support vector machines
Vibration
title Vibration fault diagnosis through genetic matching pursuit optimization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T16%3A28%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Vibration%20fault%20diagnosis%20through%20genetic%20matching%20pursuit%20optimization&rft.jtitle=Soft%20computing%20(Berlin,%20Germany)&rft.au=Stefanoiu,%20Dan&rft.date=2019-09-01&rft.volume=23&rft.issue=17&rft.spage=8131&rft.epage=8157&rft.pages=8131-8157&rft.issn=1432-7643&rft.eissn=1433-7479&rft_id=info:doi/10.1007/s00500-018-3450-0&rft_dat=%3Cproquest_cross%3E2917905593%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2917905593&rft_id=info:pmid/&rfr_iscdi=true