Vibration fault diagnosis through genetic matching pursuit optimization
This paper addresses the problem of fault diagnosis performed on a mechanical system, based on acquired vibrations from bearings. In this aim, an optimization algorithm resulted from the alliance between a time–frequency–scale signal processing method (the matching pursuit) and an evolutionary compu...
Gespeichert in:
Veröffentlicht in: | Soft computing (Berlin, Germany) Germany), 2019-09, Vol.23 (17), p.8131-8157 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper addresses the problem of fault diagnosis performed on a mechanical system, based on acquired vibrations from bearings. In this aim, an optimization algorithm resulted from the alliance between a time–frequency–scale signal processing method (the matching pursuit) and an evolutionary computing technique (mainly, a genetic algorithm) is introduced. The matching pursuit method itself leads to a NP-hard procedure, but, with the help of a metaheuristic, the procedure becomes computationally efficient. A generalization of Baker’s procedure implementing the stochastic universal sampling mechanism, as well as a new concept, namely
the Boltzmann annealing selection
, is introduced, in order to design the genetic algorithm appropriately. This latter not only plays an important role in convergence speed, but also constitutes the basis of a (self) adaptive mechanism aiming to keep in balance the exploration and exploitation features. Based on the optimal solution found through the genetic matching pursuit procedure, the bearings fault diagnosis can successfully be performed, even in case of multiple defects and without prior training of some defect classification model. |
---|---|
ISSN: | 1432-7643 1433-7479 |
DOI: | 10.1007/s00500-018-3450-0 |