Evolutionary many-objective optimization based on linear assignment problem transformations

The selection mechanisms that are most commonly adopted by multi-objective evolutionary algorithms (MOEAs) are based on Pareto optimality. However, recent studies have provided theoretical and experimental evidence regarding the unsuitability of Pareto-based selection mechanisms when dealing with pr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Soft computing (Berlin, Germany) Germany), 2018-08, Vol.22 (16), p.5491-5512
Hauptverfasser: Antonio, Luis Miguel, Berenguer, José A. Molinet, Coello, Carlos A. Coello
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The selection mechanisms that are most commonly adopted by multi-objective evolutionary algorithms (MOEAs) are based on Pareto optimality. However, recent studies have provided theoretical and experimental evidence regarding the unsuitability of Pareto-based selection mechanisms when dealing with problems having four or more objectives. In this paper, we propose a novel MOEA designed for solving many-objective optimization problems. The selection mechanism of our approach is based on the transformation of a multi-objective optimization problem into a linear assignment problem, which is solved by the Kuhn–Munkres’ (Hungarian) algorithm. Our proposed approach is compared with respect to three state-of-the-art MOEAs, designed for solving many-objective optimization problems (i.e., problems having four or more objectives), adopting standard test problems and performance indicators taken from the specialized literature. Since one of our main aims was to analyze the scalability of our proposed approach, its validation was performed adopting test problems having from two to nine objective functions. Our preliminary experimental results indicate that our proposal is very competitive with respect to all the other MOEAs compared, obtaining the best results in several of the test problems adopted, but at a significantly lower computational cost.
ISSN:1432-7643
1433-7479
DOI:10.1007/s00500-018-3164-3