Semigroup homomorphisms and fuzzy automata

A generalized Ω-fuzzy automaton over a complete residuated lattice Ω and a monoid (M,*) and with a set S of states is introduced as a monoid homomorphism F:(M,*)→(?,∘), where (?,∘) is a monoid of Ω-fuzzy sets in a set S×S. An extension principle depending of proper filters Φ in Ω is introduced which...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Soft computing (Berlin, Germany) Germany), 2002-09, Vol.6 (6), p.422-427
1. Verfasser: Močkoř, J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A generalized Ω-fuzzy automaton over a complete residuated lattice Ω and a monoid (M,*) and with a set S of states is introduced as a monoid homomorphism F:(M,*)→(?,∘), where (?,∘) is a monoid of Ω-fuzzy sets in a set S×S. An extension principle depending of proper filters Φ in Ω is introduced which then enables to introduce morphisms between generalized Ω-fuzzy automata and to introduce the category ℱΦ of these automata. It is proved that categories of classical fuzzy automata, non-deterministic automata and some other systems are equivalent to subcategories of ℱΦ for a suitable filter Φ.
ISSN:1432-7643
1433-7479
DOI:10.1007/s005000100156