Interactive rendering of globally illuminated scenes including anisotropic and inhomogeneous participating media
Although new graphics hardware has accelerated the rendering process, the realistic simulation of scenes including participating media remains a difficult problem. Interactive results have been achieved for isotropic media as well as for single scattering. In this paper, we present an interactive gl...
Gespeichert in:
Veröffentlicht in: | The Visual computer 2005-08, Vol.21 (7), p.449-462 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Although new graphics hardware has accelerated the rendering process, the realistic simulation of scenes including participating media remains a difficult problem. Interactive results have been achieved for isotropic media as well as for single scattering. In this paper, we present an interactive global illumination algorithm for the simulation of scenes that include participating media, even anisotropic and/or inhomogeneous media. The position of the observer is important in order to render inhomogeneous media according to the transport equation. Previous work normally needed to be ray-based in order to compute this equation properly. Our approach is capable of achieving real time using two 3D textures on a simple desktop PC. For anisotropic participating media we combine density estimation techniques and graphics hardware capabilities. |
---|---|
ISSN: | 0178-2789 1432-8726 1432-2315 |
DOI: | 10.1007/s00371-005-0300-8 |