A model study of the effect of weather forcing on the ecology of a meromictic Siberian lake
We used a Lake Shira numerical model to estimate the response of the ecosystem of a saline meromictic lake to variations in weather parameters during the growing season. The sensitivity analysis of the model suggests that compared to other external (nutrient inflows) and internal (spring biomasses o...
Gespeichert in:
Veröffentlicht in: | Journal of oceanology and limnology 2018-11, Vol.36 (6), p.2018-2032 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We used a Lake Shira numerical model to estimate the response of the ecosystem of a saline meromictic lake to variations in weather parameters during the growing season. The sensitivity analysis of the model suggests that compared to other external (nutrient inflows) and internal (spring biomasses of food-web components) factors, weather parameters are among the most influential for both mixolimnetic (phyto- and zooplankton) and monimolimnetic (purple sulfur bacteria, sulfur reducing bacteria and hydrogen sulfide) food-web components. Calculations with different weather scenarios shows how changes in the water temperature and mixing depth affect mixolimnetic and monimolimnetic food-web components and the depth of the oxic-anoxic interface in a meromictic lake. When weather forcing stimulates an increase in the biomass of food-web components in the mixolimnion, it produces cascading effects that lead to three results: 1) a higher content of detritus in the water column; 2) a higher content of hydrogen sulfide in the monimolimnion; 3) raising of the oxic-anoxic interface closer to the water-air surface. This cascading effect is complicated by the negative correlation between two light dependent primary producers located at different depths—phytoplankton in the mixolimnion and purple sulfur bacteria at the oxic-anoxic interface. Thus, weather conditions that stimulate higher phytoplankton biomass are associated with a higher detritus content and lower biomass of purple sulfur bacteria, a higher content of hydrogen sulfide and a shallower oxic-anoxic interface. The same weather conditions (higher wind, lower cloud cover, and lower air temperature) promote a scenario of less stable thermal stratification. Thus, our calculations suggest that weather parameters during the summer season strongly control the mixing depth, water temperature and the mixolimnetic food web. An effect of biogeochemical and physical interactions on the depth of the oxicanoxic interface is also detectable. However, intra- and interannual climate and weather effects will be more important for the control of meromixis stability. |
---|---|
ISSN: | 2096-5508 2523-3521 |
DOI: | 10.1007/s00343-018-7329-9 |