5-Fluorouracil and curcumin co-encapsulated chitosan/reduced graphene oxide nanocomposites against human colon cancer cell lines

Recent attention on chemotherapy against cancer is to explore the effective therapy through targeted delivery of anticancer agents to the tumor site by manipulating pharmacokinetic properties of nanocarriers. 5-Fluorouracil (5-FU) and curcumin (CUR) loaded chitosan/reduced graphene oxide (CS/rGO) na...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Polymer bulletin (Berlin, Germany) Germany), 2020, Vol.77 (1), p.213-233
Hauptverfasser: Dhanavel, S., Revathy, T. A., Sivaranjani, T., Sivakumar, K., Palani, P., Narayanan, V., Stephen, A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Recent attention on chemotherapy against cancer is to explore the effective therapy through targeted delivery of anticancer agents to the tumor site by manipulating pharmacokinetic properties of nanocarriers. 5-Fluorouracil (5-FU) and curcumin (CUR) loaded chitosan/reduced graphene oxide (CS/rGO) nanocomposite has been prepared via simple chemical method. The polymer matrix-type chitosan/rGO nanocomposite, before and after encapsulation, has been analyzed by various characterizations. Entrapment and loading efficiencies were estimated. The results that demonstrated higher entrapment efficiency (> 90%) were achieved by CS/rGO nanocarrier. Various kinetic models were used to analyze the release model and to elucidate the release mechanism of the drug from CS/rGO nanocomposite. The synergistic cytotoxicity was observed on addition of 5-FU + CUR-loaded CS/rGO nanocomposite which shows the effectiveness of the system toward the inhibition of growth of HT-29 colon cancer cells. The better cytotoxicity with an IC 50 of 23.8 μg/mL was observed for dual-drug-loaded nanocomposite.
ISSN:0170-0839
1436-2449
DOI:10.1007/s00289-019-02734-x