Synthesis of modified benzothiadiazole-thiophene-cored acceptor and carbazole/indolocarbazole alternating conjugated polymers and their photovoltaic applications

Two low band gap (LBG) copolymers PCz-DTBTT and PICz-DTBTT , featuring a modified 2,1,3-benzothiadiazole–thiophene-cored unit 2,5-di(4-(4-octylthiophen-2-yl)-2,1,3-benzothiadiazol-7-yl)thiophene (DTBTT) as acceptor and electron-rich building blocks carbazole (Cz) or indolo[3,2- b ]carbazole (ICz) as...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Polymer bulletin (Berlin, Germany) Germany), 2015-03, Vol.72 (3), p.565-581
Hauptverfasser: Tong, Junfeng, Guo, Pengzhi, Zhang, Heng, Li, Jianfeng, Zhang, Peng, Yang, Chunyan, Chen, Dejia, Xia, Yangjun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Two low band gap (LBG) copolymers PCz-DTBTT and PICz-DTBTT , featuring a modified 2,1,3-benzothiadiazole–thiophene-cored unit 2,5-di(4-(4-octylthiophen-2-yl)-2,1,3-benzothiadiazol-7-yl)thiophene (DTBTT) as acceptor and electron-rich building blocks carbazole (Cz) or indolo[3,2- b ]carbazole (ICz) as donor, were synthesized via Suzuki crossing-coupling method. Both copolymers show good solubility in common organic solvents and thermal stabilities. The optical study exhibits a broad absorption in the range of 300–700 nm with the optical band gap ( E g opt ) of about 1.78 eV, while the electrochemical cyclic voltammetry (CV) measurement shows the relatively deeper highest occupied molecular orbital (HOMO) energy level (about −5.45 eV). Photovoltaic devices based on the blends of PCz-DTBTT /PC 71 BM (w:w; 1:2) and PICz-DTBTT /PC 71 BM (w:w; 1:2) with devices configuration as ITO/PEDOT:PSS/polymer:PC 71 BM/Ca/Al, show the power conversion efficiency (PCE) up to 2.07 and 2.21 %, with the open circuit voltage ( V oc ) of 0.75 and 0.80 V, short circuit current density ( J sc ) of 6.47 and 6.40 mA cm −2 , fill factor (FF) of 42.6 and 43.2 % under an AM1.5 simulator (100 mW cm −2 ), respectively. It is apparent that DTBTT-based devices exhibit the broad response range, covering from 300 to 720 nm.
ISSN:0170-0839
1436-2449
DOI:10.1007/s00289-014-1292-1